A Computational Study Of Perspective Cuts

Ksenia Bestuzheva¹, Ambros Gleixner^{1,2}, Stefan Vigerske³

¹Zuse Institute Berlin, ²HTW Berlin, ³GAMS

bestuzheva@zib.de,gleixner@zib.de,svigerske@gams.com

31st European Conference On Operational Research July 14, 2021

Semicontinuous Variables

SC variables **x** are defined by the following relations:

$$(\mathbf{\underline{x}} - \mathbf{x}^0) \mathbf{z} \le \mathbf{x} - \mathbf{x}^0 \le (\mathbf{\overline{x}} - \mathbf{x}^0) \mathbf{z},$$

 $\mathbf{z} \in \{0, 1\},$

where z - indicator variable.

This implies:

$$\begin{aligned} \mathbf{x} &= \mathbf{x}^0 \text{ if } \mathbf{z} = \mathbf{0}, \\ \mathbf{x} &\in [\underline{\mathbf{x}}, \overline{\mathbf{x}}] \text{ if } \mathbf{z} = \mathbf{1}. \end{aligned}$$

Can be used for describing "on" and "off" states.

Constraints with SC Variables

$$egin{aligned} egin{aligned} egi$$

$$g(x) = x^2 \le w,$$

-1.5z \le x \le z

ł

On/off constraints can be written as SC constraints.

Relaxations for SC Constraints

$$egin{aligned} & egin{aligned} & egi$$

Relaxations for SC Constraints

$$egin{aligned} & egin{aligned} & egi$$

Relaxation can be improved with the use of semicontinuity!

Disjunctive Formulation

$$S^{0} = \{ (\mathbf{x}, w, z) \mid \mathbf{x} = \mathbf{x}^{0}, \ g(\mathbf{x}^{0}) \le w, \ \mathbf{z} = \mathbf{0} \},$$

$$S^{1} = \{ (\mathbf{x}, w, z) \mid \mathbf{x} \in [\underline{x}, \overline{\mathbf{x}}], \ g(\mathbf{x}) \le w, \ \mathbf{z} = \mathbf{1} \},$$

$$S = S^{0} \cup S^{1}.$$

Convex hull = ?

The Perspective Function

$$ilde{g}(\mathbf{x}, \mathbf{z}) = egin{cases} zg(rac{\mathbf{x}}{\mathbf{z}}) ext{ if } \mathbf{z} > 0, \ +\infty ext{ otherwise} \end{cases}$$

- epi(g̃) is a cone generated by epi(g);
- the perspective operator preserves convexity.

Several dilations of the function $y = x^2$

Perspective Reformulation

If g is **convex**, the perspective function can be used to describe conv(S):

$$egin{aligned} & \textit{cl}\{ ilde{g}(\mathbf{x}, z) \leq w\}, \ & (\mathbf{\underline{x}}-\mathbf{x}^0)z \leq \mathbf{x}-\mathbf{x}^0 \leq (\mathbf{\overline{x}}-\mathbf{x}^0)z. \end{aligned}$$

(Need the closure because $\tilde{g}(\mathbf{x}, 0)$ is not well-defined)

Perspective Cuts

Linearise the perspective formulation at $(\mathbf{x}^*, \mathbf{z}^*) \Rightarrow$ perspective cuts.

Perspective Cuts

Linearise the perspective formulation at $(\mathbf{x}^*, \mathbf{z}^*) \Rightarrow$ perspective cuts.

Assuming $\mathbf{x}^0 = \mathbf{g}(\mathbf{x}^0) = \mathbf{0}$: $\nabla \mathbf{g}(\hat{\mathbf{x}})^T \mathbf{x} + (\mathbf{g}(\hat{\mathbf{x}}) - \nabla \mathbf{g}(\hat{\mathbf{x}})^T \hat{\mathbf{x}}) \mathbf{z} \le \mathbf{w} \quad (\hat{\mathbf{x}} = \mathbf{x}^*/\mathbf{z}^*)$

(Frangioni and Gentile, 2006)

Generalised Perspective Cuts

Given any valid linear inequality $ax + b \le w$ for the set $\{(x, w) \mid g(x) \le w, x \in [\underline{x}, \overline{x}]\}$, where x is semicontinuous, the inequality

$$a\mathbf{x} + b + (a\mathbf{x}^0 + b - g(\mathbf{x}^0))(\mathbf{z} - 1) \le w$$
 (*)

is valid for the disjunctive set

$$\{\mathbf{x} = \mathbf{x}^0, \mathbf{g}(\mathbf{x}^0) \le \mathbf{w}, \mathbf{z} = 0\} \cup \{\mathbf{x} \in [\underline{\mathbf{x}}, \overline{\mathbf{x}}], \mathbf{g}(\mathbf{x}) \le \mathbf{w}, \mathbf{z} = 1\}.$$

- Cut (*) does not depend on convexity of g
- $a\mathbf{x} + b \leq w$ only needs to be valid when $\mathbf{x} \in [\underline{\mathbf{x}}, \overline{\mathbf{x}}]$ (also if $\mathbf{x}^0 \notin [\underline{\mathbf{x}}, \overline{\mathbf{x}}]$)
- If g is convex, cut (*) is equivalent to the perspective cut from [Frangioni, Gentile, 2006]

Example Of Cut Construction

Cut valid for z = 1

Cut valid for $z \in \{0, 1\}$

- Perspective cuts implemented in SCIP;
- Selected 186 MINLPLib instances that contain suitable structures;
- 4 permutations of each instance + default;
- Time limit one hour.

Computational Results: Summary

Instances with SC structures

All	Convex	Both	Nonconvex
186	89	53	44

Solved and failed instances

	Off	Convex	Full
Solved	741	764	759
Limit	175	154	154
Fails	14	12	17

Geometric means of time and nodes

	Off	Convex	Full
Time	13.79	11.23	11.27
Relative time	1.00	0.81	0.82
Nodes	620	479	472
Relative nodes	1.00	0.77	0.76

Instances with improvement in root node dual bound

	Off	Convex	Convex	Full
Better by $> 50\%$	16	46	0	31
Better by $5-50\%$	25	39	14	11
Same within 5%		584	429	

Computational Results: Performance Profiles

K. Bestuzheva, A. Gleixner, S. Vigerske

A Computational Study Of Perspective Cuts

Computational Results: Tighter Bounds

	Fails	Limit	Solved	$ \begin{array}{ } \textbf{RootImpr} \\ > 50\% \end{array} $	Time	Nodes
Full-noBT	16	153	761	4	34.45	2910
Full	17	154	759	25	33.68	2618

Comparison between Full-noBT and Full

A Computational Study Of Perspective Cuts