Reformulation-Linearisation Technique for Implicit Bilinear Relations

Ksenia Bestuzheva ${ }^{1}$, Tobias Achterberg ${ }^{2}$, Ambros Gleixner 1,3
${ }^{1}$ Zuse Institute Berlin and ${ }^{2}$ Gurobi Optimization and ${ }^{3}$ HTW Berlin
June 24, 2021

Mixed-Integer Programs with Bilinear Products

$$
\begin{align*}
& \min \\
& \text { s.t. } \\
& \text { } A x-b \leq 0 \\
& \tag{*}\\
& g(x) \leq 0 \\
& \quad \pm\left(x_{i} x_{j}-w_{i j}\right) \leq 0 \forall i, j \in P \\
& \quad x_{j} \in \mathbb{Z}, j \in I
\end{align*}
$$

where
c, b - constant vectors,
x - variable vector, $A-m \times n$ matrix,
g - nonlinear vector function, $(*)$ - bilinear product relations.

Bilinear Products

We are interested in constraints

$$
\pm\left(x_{i} x_{j}-w_{i j}\right) \leq 0
$$

These constraints are nonlinear and nonconvex.

Applications: pooling, packing, wastewater treatment, power systems optimisation, portfolio optimisation, etc.

McCormick Envelopes

Bilinear products of bounded variables are linearized by McCormick envelopes:

$$
x y=w
$$

is replaced by:

$$
\begin{gathered}
w \geq x^{\prime} y+x y^{\prime}-x^{\prime} y^{\prime} \\
w \geq x^{u} y+x y^{\prime}-x^{\prime} y^{u} \\
w \leq x^{\prime} y+x y^{u}-x^{\prime} y^{u} \\
w \leq x^{u} y+x y^{\prime}-x^{u} y^{\prime}
\end{gathered}
$$

McCormick Envelopes

Bilinear products of bounded variables are linearized by McCormick envelopes:

$$
x y=w
$$

is replaced by:

$$
\begin{gathered}
w \geq x^{\prime} y+x y^{\prime}-x^{\prime} y^{\prime} \\
w \geq x^{u} y+x y^{\prime}-x^{u} y^{u} \\
w \leq x^{\prime} y+x y^{\prime}-x^{\prime} y^{u} \\
w \leq x^{u} y+x y^{\prime}-x^{u} y^{\prime}
\end{gathered}
$$

McCormick Envelopes

Bilinear products of bounded variables are linearized by McCormick envelopes:

$$
x y=w
$$

is replaced by:

$$
\begin{gathered}
w \geq x^{\prime} y+x y^{\prime}-x^{\prime} y^{\prime} \\
w \geq x^{u} y+x y^{\prime}-x^{u} y^{u} \\
w \leq x^{\prime} y+x y^{\prime}-x^{\prime} y^{u} \\
w \leq x^{u} y+x y^{\prime}-x^{u} y^{\prime}
\end{gathered}
$$

McCormick Envelopes

Bilinear products of bounded variables are linearized by McCormick envelopes:

$$
x y=w
$$

is replaced by:

$$
\begin{gathered}
w \geq x^{\prime} y+x y^{\prime}-x^{\prime} y^{\prime} \\
w \geq x^{u} y+x y^{\prime}-x^{u} y^{u} \\
w \leq x^{\prime} y+x y^{\prime}-x^{\prime} y^{u} \\
w \leq x^{u} y+x y^{\prime}-x^{u} y^{\prime}
\end{gathered}
$$

McCormick Envelopes

Bilinear products of bounded variables are linearized by McCormick envelopes:

$$
x y=w
$$

is replaced by:

$$
\begin{gathered}
w \geq x^{\prime} y+x y^{\prime}-x^{\prime} y^{\prime} \\
w \geq x^{u} y+x y^{\prime}-x^{u} y^{u} \\
w \leq x^{\prime} y+x y^{\prime}-x^{\prime} y^{u} \\
w \leq x^{u} y+x y^{\prime}-x^{u} y^{\prime}
\end{gathered}
$$

RLT Cuts

McCormick relaxation describes the convex hull, but the LP solution often violates the bilinear constraints!

General idea: use other constraints too.
RLT (Reformulation Linearization Technique): derive cuts from the product relation + variable bound + a linear constraint:

$$
\begin{gathered}
x_{1} x_{2}=w_{12} \\
a_{1} x_{1}+a^{r} \cdot x^{r}=b \\
x_{2} \in\left[x_{2}^{\prime}, x_{2}^{u}\right]
\end{gathered}
$$

(a^{r}, x^{r} - coefficient and variable vectors representing the remaining part of the linear constraint.)

RLT Cuts - Construction

Multiply the constraint with $\left(x_{2}-x_{2}^{\prime}\right)$ or $\left(x_{2}^{\mu}-x_{2}\right)$:

$$
a_{1} x_{1}\left(x_{2}-x_{2}^{\prime}\right)+a^{r} x^{r}\left(x_{2}-x_{2}^{\prime}\right)=b\left(x_{2}-x_{2}^{\prime}\right)
$$

\leftarrow Reformulation

Linearize the nonlinear terms:

$$
\begin{aligned}
& a_{1} w_{12}-a_{1} x_{1} x_{2}^{\prime}+L^{\text {under }}\left(a^{r} x^{r} x_{2}\right)-a^{r} x^{r} x_{2}^{\prime} \leq b\left(x_{2}-x_{2}^{\prime}\right), \quad \leftarrow \text { Linearization } \\
& a_{1} w_{12}-a_{1} x_{1} x_{2}^{\prime}+L^{\text {over }}\left(a^{r} x^{r} x_{2}\right)-a^{r} x^{r} x_{2}^{\prime} \geq b\left(x_{2}-x_{2}^{\prime}\right),
\end{aligned}
$$

Relaxations of $x_{i} x_{2}$, if product $x_{i} x_{2}=w_{i 2}$ does not exist:

- McCormick for bilinear products
- Tangent/secant for quadratic terms

Contributions

RLT cuts:

+ Can provide strong dual bounds
- A large number of cuts is generated, difficult to select which cuts to apply; even separation itself can be expensive

In this work we develop:

- Detection of hidden products in MILPs
- Separation algorithm

Hidden Bilinear Products

Bilinear relations can be modeled by linear constraints with at least one binary variable:

$$
\begin{array}{c|c|c}
\text { Product } & \text { Implied relation } & \text { Big-M constraint } \\
w \geq x y & \begin{array}{c}
x=0 \Rightarrow w \geq 0, \\
x=1 \Rightarrow w \geq y .
\end{array} & w-y+\left(w^{\prime}-y^{\prime}\right) x \geq w^{\prime}-y^{u} . \\
w \leq x y & \begin{array}{l}
x=0 \\
x=0 \Rightarrow w \leq 0, \\
x=1 \Rightarrow w \leq y .
\end{array} & w-y+\left(w^{u}-y^{\prime}\right) x \leq w^{u}-y^{\prime} .
\end{array}
$$

(x binary)

Hidden Products - General Form

Two constraints:

$$
\begin{aligned}
& a_{1} w+b_{1} x+c_{1} y \leq d_{1}, \\
& a_{2} w+b_{2} x+c_{2} y \leq d_{2}
\end{aligned}
$$

where

$$
\begin{gathered}
x \in\{0,1\}, \quad a_{1} c_{2}-a_{2} c_{1} \neq 0 \\
b_{1}>0, b_{2} \leq 0, a_{1} a_{2} \neq 0
\end{gathered}
$$

imply the following product relation:

$$
x y \geq / \leq \frac{a_{1} a_{2} w+\left(a_{2} b_{1}-a_{2} d_{1}+a_{1} d_{2}\right) x+a_{1} c_{2} y-a_{1} d_{2}}{a_{1} c_{2}-a_{2} c_{1}}
$$

(Derived by writing $x y \geq 1 \leq A w+B x+C y+D$ for unknown A, B, C, D and enforcing the equivalence to the linear inequalities)

Relation Types

For product detection, we use several types of relations:

	Linear relation between 2 variables ac- Implied relation tivated by a binary variable: $x=f \Rightarrow \bar{a} w+\bar{c} y \leq \bar{d} ;$	Hashtable with 3 sorted vari- ables as keys
Implied bound	Variable bound activated by a binary variable: $x=f \Rightarrow \bar{a} w \leq \bar{d} ;$	Sorted array for each vari- able
Clique	If binary variables $x_{i}, i \in C$ and ! x_{i}, $i \in C^{r}$ are in a clique, then: $\sum_{i \in C} x_{i}+$	Clique table
	$\sum_{i \in C^{r}}\left(1-x_{i}\right) \leq 1$	

Also linear constraints with 2 or 3 nonzeros and global variable bounds.
(f - binary constant)

Detecting Hidden Products

- Find implied relations $x=f \Rightarrow \bar{a}_{1} w+\bar{c}_{1} y \leq \bar{d}_{1}$ among constraints with 3 nonzeroes and at least one binary variable.
- For each implied relation, look for the second relation:
- It must be implied by $x=!f$ and contain w or w and y

Product relations can also be described without a size 3 constraint:

- For each implied bound $x=f \Rightarrow w \leq \bar{d}_{1}$, look for the second relation:
- unconditional relation of w and y (implied bound, clique, linear constraint with 2 nonzeroes).

Variable order matters: depending on the choice of w, x and y, we get different products.

Separation of RLT Cuts

When replacing $a_{1} x_{1} x_{2}+a^{r} \cdot x^{r} x_{2} \leq b x_{2}$ with

$$
a_{1} w_{12}+L^{\text {under }}\left(a^{r} \cdot x^{r} x_{2}\right) \leq b x_{2},
$$

the cut can be violated if $a_{1} x_{1} x_{2}<a_{1} w_{12}$.

Separation Algorithm

- For each variable x_{j} that appears in products:
- For each violated product relation with $x_{i} x_{j}$, mark constraints of x_{i} where a_{i} has the right sign.
- The marks tell us which combinations of bound factors and sides to use for cut generation.
- For each marked row:
* Construct cuts with suitable sides and multipliers;
* If a cut is violated, add it to the cut pool.

If several linearisations are available: use the most violated.
For example:

$$
x_{1} \leq 0, x_{1} x_{2} \leq w, x_{2} \in[1,2]
$$

Reformulations are: $x_{1}\left(x_{2}-1\right) \leq 0, x_{1}\left(2-x_{2}\right) \leq 0$
If at LP solution $x_{1}^{*} x_{2}^{*}>w^{*}$, use only the second reformulation.

Term Linearisation

- Replace $x_{i} x_{j}$ by:
- linearisation $L\left(w_{i j}, x_{i}, x_{j}\right)$, if it exists in the right direction;
- clique relationship if x_{i} and x_{j} are binary and clique exists:

$$
\begin{array}{ll}
-x_{i}+x_{j} \leq 1 & \Rightarrow x_{i} x_{j}=0, \\
-x_{i}+\left(1-x_{j}\right) \leq 1 & \Rightarrow x_{i} x_{j}=x_{i}, \\
-\left(1-x_{i}\right)+x_{j} \leq 1 & \Rightarrow x_{i} x_{j}=x_{j}, \\
-\left(1-x_{i}\right)+\left(1-x_{j}\right) \leq 1 & \Rightarrow x_{i} x_{j}=x_{i}+x_{j}-1 ;
\end{array}
$$

- McCormick envelopes otherwise.
- Replace x_{j}^{2} by:
- x_{j} if x_{j} is binary
- Tangent for underestimation and secant for overestimation otherwise

Projection

McCormick is tight if at least one of the variables is at bound \Rightarrow replacing such a product does not add to the violation.

Construct a smaller system by fixing all variables that are at bound:

$$
\sum_{i=1}^{n} a_{i} x_{i} \leq b \text { becomes } \sum_{i \in!B} a_{i} x_{i} \leq b-\sum_{i \in B} a_{i} x_{i}^{*}
$$

$!B$ - indices of variables not at bound, B - indices of variables at bound.

Check violation for projected cuts first.

However...
if McCormick constraints are dynamically added as cuts, the above does not hold \Rightarrow some violated cuts might be ignored.

Computational Results - Setup

- Using a development version of SCIP;
- Linear solver SoPlex;
- Time limit $1 / 2$ hour.
- Testsets: subsets of MINLPLib and MIPLIB2017 where (either explicit or implicit) bilinear products exist.

Computational Results - Implicit Products

Settings:

- Off: RLT cuts are disabled
- Existing: RLT cuts are added only for products that exist explicitly in the problem
- Hidden: RLT cuts are added for both explicit and implicit products

Linear instances:

Setting	Solved	T	N	T_100	N_100	T_1000	N_1000
Off	174	$\mathbf{4 6 . 3 5}$	$\mathbf{1 3 6 3}$	$\mathbf{4 1 2 . 3}$	10022	1104.9	24052
Hidden	$\mathbf{1 7 7}$	48.76	1392	414.2	$\mathbf{9 4 9 1}$	$\mathbf{1 0 6 9 . 9}$	$\mathbf{1 9 4 7 0}$

Nonlinear instances:

Setting	Solved	T	N
Off	869	51.38	2698
Existing	890	$\mathbf{4 7 . 0 1}$	$\mathbf{2 3 3 1}$
Hidden	$\mathbf{8 9 2}$	48.82	2396

Computational Results - Separation Algorithm

Settings:

- RLT cuts for both existing and hidden products are enabled
- SimpleSepa: a straightforward separation algorithm is used
- NewSepa: the new separation algorithm is used

Linear instances:

Setting	Solved	T	N
SimpleSepa	154	94.57	$\mathbf{1 1 8 0}$
NewSepa	$\mathbf{1 7 4}$	$\mathbf{4 9 . 8 2}$	1448

Nonlinear instances:

Setting	Solved	T	N
SimpleSepa	$\mathbf{9 0 2}$	45.61	2188
NewSepa	898	46.23	2373

Computational Results - Projection

Settings:

- RLT cuts for both existing and hidden products are enabled
- NoProject: the projected LP is not used
- Project: the projected LP is used

Linear instances:

Setting	Solved	T	N
NoProject	173	49.69	1463
Project	$\mathbf{1 7 6}$	$\mathbf{4 8 . 9 0}$	$\mathbf{1 4 2 4}$

Nonlinear instances:

Setting	Solved	T	N
NoProject	886	$\mathbf{4 8 . 0 0}$	$\mathbf{2 3 7 4}$
Project	$\mathbf{8 8 8}$	48.43	2424

Summary

- Implicit product relations are detected by analysing MILP constraints.
- Use row marking to speed up separation.
- Use a projected LP to speed up separation and filter out cuts that are less promising.
- RLT cuts improve performance for difficult MILP instances; the separation algorithm is crucial.
- RLT cuts help on MINLP instances; however, adding cuts derived from implicit products as well as utilising the new separation algorithm appears to be slightly detrimental to performance.

