Reformulation-Linearisation Technique for Implicit Bilinear Relations

Ksenia Bestuzheva ¹, Tobias Achterberg ², Ambros Gleixner ^{1,3}

 $^1\mathsf{Zuse}$ Institute Berlin and $^2\mathsf{Gurobi}$ Optimization and $^3\mathsf{HTW}$ Berlin

June 24, 2021

Mixed-Integer Programs with Bilinear Products

 $\begin{array}{l} \min \ c \cdot x \\ \text{s.t.} \ Ax - b \leq 0, \\ g(x) \leq 0, \\ \pm \left(x_i x_j - w_{ij} \right) \leq 0 \ \forall i, j \in P, \qquad (*) \\ x_j \in \mathbb{Z}, \ j \in I, \end{array}$

where

c, b - constant vectors, x - variable vector, A - $m \times n$ matrix,

g - nonlinear vector function, (*) - bilinear product relations.

Bilinear Products

We are interested in constraints

$$\pm (x_i x_j - w_{ij}) \le 0.$$

These constraints are <u>nonlinear</u> and <u>nonconvex</u>.

Applications: pooling, packing, wastewater treatment, power systems optimisation, portfolio optimisation, etc.

Bilinear products of bounded variables are linearized by McCormick envelopes:

xy = wis replaced by: w > x'y + xy' - x'y' $w \ge x^{\mu}y + xy^{\mu} - x^{\mu}y^{\mu}$ $w < x^{l}y + xy^{\mu} - x^{l}y^{\mu}$ $w < x^{\mu}v + xv^{\prime} - x^{\mu}v^{\prime}$

Bilinear products of bounded variables are linearized by McCormick envelopes:

xy = w

$$w \ge x^{l}y + xy^{l} - x^{l}y^{l}$$
$$w \ge x^{u}y + xy^{u} - x^{u}y^{u}$$
$$w \le x^{l}y + xy^{u} - x^{l}y^{u}$$
$$w \le x^{u}y + xy^{l} - x^{u}y^{l}$$

Bilinear products of bounded variables are linearized by McCormick envelopes:

xy = w

$$w \ge x^{l}y + xy^{l} - x^{l}y^{l}$$
$$w \ge x^{u}y + xy^{u} - x^{u}y^{u}$$
$$w \le x^{l}y + xy^{u} - x^{l}y^{u}$$
$$w \le x^{u}y + xy^{l} - x^{u}y^{l}$$

Bilinear products of bounded variables are linearized by McCormick envelopes:

xy = w

$$w \ge x^{l}y + xy^{l} - x^{l}y^{l}$$
$$w \ge x^{u}y + xy^{u} - x^{u}y^{u}$$
$$w \le x^{l}y + xy^{u} - x^{l}y^{u}$$
$$w \le x^{u}y + xy^{l} - x^{u}y^{l}$$

Bilinear products of bounded variables are linearized by McCormick envelopes:

xy = w

$$w \ge x^{l}y + xy^{l} - x^{l}y^{l}$$
$$w \ge x^{u}y + xy^{u} - x^{u}y^{u}$$
$$w \le x^{l}y + xy^{u} - x^{l}y^{u}$$
$$w \le x^{u}y + xy^{l} - x^{u}y^{l}$$

RLT Cuts

McCormick relaxation describes the convex hull, but the LP solution often violates the bilinear constraints!

General idea: use other constraints too.

RLT (Reformulation Linearization Technique): derive cuts from the product relation + variable bound + a linear constraint:

 $x_1 x_2 = w_{12},$ $a_1 x_1 + a^r \cdot x^r = b,$ $x_2 \in [x_2^l, x_2^u].$

 $(a^r, x^r$ - coefficient and variable vectors representing the remaining part of the linear constraint.)

RLT Cuts - Construction

Multiply the constraint with $(x_2 - x'_2)$ or $(x''_2 - x_2)$: $a_1x_1(x_2 - x'_2) + a'x'(x_2 - x'_2) = b(x_2 - x'_2), \qquad \leftarrow \text{Reformulation}$

Linearize the nonlinear terms:

 $\begin{array}{ll} a_1 w_{12} - a_1 x_1 x_2^l + L^{under}(a^r x^r x_2) - a^r x^r x_2^l \leq b(x_2 - x_2^l), & \leftarrow \text{Linearization} \\ a_1 w_{12} - a_1 x_1 x_2^l + L^{over}(a^r x^r x_2) - a^r x^r x_2^l \geq b(x_2 - x_2^l), \end{array}$

Relaxations of $x_i x_2$, if product $x_i x_2 = w_{i2}$ does not exist:

- McCormick for bilinear products
- Tangent/secant for quadratic terms

Contributions

RLT cuts:

+ Can provide strong dual bounds

- A large number of cuts is generated, difficult to select which cuts to apply; even separation itself can be expensive

In this work we develop:

- Detection of hidden products in MILPs
- Separation algorithm

Hidden Bilinear Products

Bilinear relations can be modeled by linear constraints with at least one binary variable:

ProductImplied relationBig-M constraint $w \ge xy$ $x = 0 \Rightarrow w \ge 0,$
 $x = 1 \Rightarrow w \ge y.$ $w - w^l x \ge 0,$
 $w - y + (w^l - y^u) x \ge w^l - y^u.$ $w \le xy$ $x = 0 \Rightarrow w \le 0,$
 $x = 1 \Rightarrow w \le y.$ $w - w^u x \le 0,$
 $w - y + (w^u - y^l) x \le w^u - y^l.$

(x binary)

Hidden Products - General Form

Two constraints:

 $a_1w + b_1x + c_1y \le d_1,$ $a_2w + b_2x + c_2y \le d_2,$

where

$$x \in \{0, 1\}, \ a_1 c_2 - a_2 c_1 \neq 0,$$

 $b_1 > 0, b_2 \le 0, \ a_1 a_2 \neq 0,$

imply the following product relation:

$$xy \ge / \le \frac{a_1a_2w + (a_2b_1 - a_2d_1 + a_1d_2)x + a_1c_2y - a_1d_2}{a_1c_2 - a_2c_1}$$

(Derived by writing $xy \ge / \le Aw + Bx + Cy + D$ for unknown A, B, C, D and enforcing the equivalence to the linear inequalities)

Relation Types

For product detection, we use several types of relations:

Implied relation	Linear relation between 2 variables ac- tivated by a binary variable: $x = f \Rightarrow \bar{a}w + \bar{c}y \le \bar{d};$	Hashtable with 3 sorted vari- ables as keys
Implied bound	Variable bound activated by a binary variable: $x = f \Rightarrow \bar{a}w \leq \bar{d};$	Sorted array for each vari- able
Clique	If binary variables x_i , $i \in C$ and $!x_i$, $i \in C^r$ are in a clique, then: $\sum_{i \in C} x_i + \sum_{i \in C^r} (1 - x_i) \le 1$	Clique table

Also linear constraints with 2 or 3 nonzeros and global variable bounds.

(f - binary constant)

Detecting Hidden Products

- Find implied relations $x = f \Rightarrow \bar{a}_1 w + \bar{c}_1 y \le \bar{d}_1$ among constraints with 3 nonzeroes and at least one binary variable.
- For each implied relation, look for the **second relation**:
 - It must be implied by x = !f and contain w or w and y

Product relations can also be described without a size 3 constraint:

- For each implied bound $x = f \Rightarrow w \le \overline{d_1}$, look for the second relation:
 - **unconditional relation** of *w* and *y* (implied bound, clique, linear constraint with 2 nonzeroes).

Variable order matters: depending on the choice of w, x and y, we get different products.

Separation of RLT Cuts

When replacing $a_1x_1x_2 + a^r \cdot x^r x_2 \leq bx_2$ with

 $a_1w_{12} + L^{under}(a^r \cdot x^r x_2) \le bx_2,$

the cut can be violated if $a_1x_1x_2 < a_1w_{12}$.

Separation Algorithm

- For each variable x_j that appears in products:
 - For each violated product relation with $x_i x_j$, mark constraints of x_i where a_i has the right sign.
 - The marks tell us which combinations of bound factors and sides to use for cut generation.
 - For each marked row:
 - * Construct cuts with suitable sides and multipliers;
 - * If a cut is violated, add it to the cut pool.

If several linearisations are available: use the most violated.

For example:

$x_1 \leq 0, \ x_1 x_2 \leq w, \ x_2 \in [1,2]$

Reformulations are: $x_1(x_2 - 1) \le 0, x_1(2 - x_2) \le 0$

If at LP solution $x_1^* x_2^* > w^*$, use only the second reformulation.

Term Linearisation

- Replace x_ix_j by:
 - linearisation $L(w_{ij}, x_i, x_j)$, if it exists in the right direction;
 - clique relationship if x_i and x_j are binary and clique exists:
 - $\begin{array}{ll} -x_{i} + x_{j} \leq 1 & \Rightarrow & x_{i}x_{j} = 0, \\ -x_{i} + (1 x_{j}) \leq 1 & \Rightarrow & x_{i}x_{j} = x_{i}, \\ -(1 x_{i}) + x_{j} \leq 1 & \Rightarrow & x_{i}x_{j} = x_{j}, \\ -(1 x_{i}) + (1 x_{j}) \leq 1 & \Rightarrow & x_{i}x_{j} = x_{i} + x_{i} 1; \end{array}$
 - McCormick envelopes otherwise.
- Replace x²_j by:
 - x_j if x_j is binary
 - Tangent for underestimation and secant for overestimation otherwise

Projection

McCormick is tight if at least one of the variables is at bound \Rightarrow replacing such a product does not add to the violation.

Construct a smaller system by fixing all variables that are at bound:

$$\sum_{i=1}^n a_i x_i \le b \text{ becomes } \sum_{i \in !B} a_i x_i \le b - \sum_{i \in B} a_i x_i^*,$$

!B - indices of variables not at bound, B - indices of variables at bound.

Check violation for projected cuts first.

However...

if McCormick constraints are dynamically added as cuts, the above does not hold $\ \Rightarrow\$ some violated cuts might be ignored.

Computational Results - Setup

- Using a development version of SCIP;
- Linear solver SoPlex;
- Time limit 1/2 hour.
- Testsets: subsets of MINLPLib and MIPLIB2017 where (either explicit or implicit) bilinear products exist.

Computational Results - Implicit Products

Settings:

- Off: RLT cuts are disabled
- Existing: RLT cuts are added only for products that exist explicitly in the problem
- Hidden: RLT cuts are added for both explicit and implicit products

Linear instances:

Setting	Solved	Т	Ν	T_100	N_100	T_1000	N_1000
Off	174	46.35	1363	412.3	10022	1104.9	24052
Hidden	177	48.76	1392	414.2	9491	1069.9	19470

Nonlinear instances:

Setting	Solved	Т	Ν
Off	869	51.38	2698
Existing	890	47.01	2331
Hidden	892	48.82	2396

B., Achterberg, Gleixner

Reformulation-Linearisation Technique for Implicit Bilinear Relations

Computational Results - Separation Algorithm

Settings:

- RLT cuts for both existing and hidden products are enabled
- SimpleSepa: a straightforward separation algorithm is used
- NewSepa: the new separation algorithm is used

Linear instances:

Setting	Solved	Т	Ν
SimpleSepa	154	94.57	1180
NewSepa	174	49.82	1448

Nonlinear instances:

Setting	Solved	Т	Ν
SimpleSepa	902	45.61	2188
NewSepa	898	46.23	2373

Computational Results - Projection

Settings:

- RLT cuts for both existing and hidden products are enabled
- NoProject: the projected LP is not used
- Project: the projected LP is used

Linear instances:

Setting	Solved	Т	Ν
NoProject	173	49.69	1463
Project	176	48.90	1424

Nonlinear instances:

Setting	Solved	Т	N
NoProject	886	48.00	2374
Project	888	48.43	2424

Summary

- Implicit product relations are detected by analysing MILP constraints.
- Use row marking to speed up separation.
- Use a projected LP to speed up separation and filter out cuts that are less promising.
- RLT cuts improve performance for difficult MILP instances; the separation algorithm is crucial.
- RLT cuts help on MINLP instances; however, adding cuts derived from implicit products as well as utilising the new separation algorithm appears to be slightly detrimental to performance.