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Mixed-Integer Programs with Bilinear Products

min c · x
s.t. Ax− b ≤ 0,

g(x) ≤ 0,

± (xixj − wij) ≤ 0 ∀i, j ∈ P, (∗)
xj ∈ Z, j ∈ I,

where
c, b - constant vectors,
x - variable vector,
A - m× n matrix,

g - nonlinear vector function,
(∗) - bilinear product relations.
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Bilinear Products

We are interested in constraints

±(xixj − wij) ≤ 0.

These constraints are nonlinear and
nonconvex.

Applications: pooling, packing, wastewater
treatment, power systems optimisation, port-
folio optimisation, etc.
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McCormick Envelopes

Bilinear products of bounded variables are linearized by McCormick
envelopes:

xy = w
is replaced by:

w ≥ xly + xyl − xlyl

w ≥ xuy + xyu − xuyu

w ≤ xly + xyu − xlyu

w ≤ xuy + xyl − xuyl
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RLT Cuts
McCormick relaxation describes the convex hull, but the LP solution often
violates the bilinear constraints!

General idea: use other constraints too.

RLT (Reformulation Linearization Technique): derive cuts from the
product relation + variable bound + a linear constraint:

x1x2 = w12,

a1x1 + ar · xr = b,
x2 ∈ [xl

2, xu
2].

(ar, xr - coefficient and variable vectors representing the remaining part of
the linear constraint.)
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RLT Cuts - Construction

Multiply the constraint with (x2 − xl
2) or (xu

2 − x2):
a1x1(x2 − xl

2) + arxr(x2 − xl
2) = b(x2 − xl

2),
← Reformulation

Linearize the nonlinear terms:
a1w12 − a1x1xl

2 + Lunder(arxrx2)− arxrxl
2 ≤ b(x2 − xl

2),
a1w12 − a1x1xl

2 + Lover(arxrx2)− arxrxl
2 ≥ b(x2 − xl

2),
← Linearization

Relaxations of xix2, if product xix2 = wi2 does not exist:
• McCormick for bilinear products
• Tangent/secant for quadratic terms
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Contributions

RLT cuts:
+ Can provide strong dual bounds
- A large number of cuts is generated, difficult to select which cuts to
apply; even separation itself can be expensive

In this work we develop:

• Detection of hidden products in MILPs
• Separation algorithm
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Hidden Bilinear Products

Bilinear relations can be modeled by linear constraints with at least one
binary variable:

Product Implied relation Big-M constraint

w ≥ xy x = 0 ⇒ w ≥ 0,
x = 1 ⇒ w ≥ y.

w− wlx ≥ 0,
w− y + (wl − yu)x ≥ wl − yu.

w ≤ xy x = 0 ⇒ w ≤ 0,
x = 1 ⇒ w ≤ y.

w− wux ≤ 0,
w− y + (wu − yl)x ≤ wu − yl.

(x binary)
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Hidden Products - General Form

Two constraints:

a1w + b1x + c1y ≤ d1,
a2w + b2x + c2y ≤ d2,

where
x ∈ {0, 1}, a1c2 − a2c1 ̸= 0,

b1 > 0, b2 ≤ 0, a1a2 ̸= 0,

imply the following product relation:

xy ≥ / ≤ a1a2w + (a2b1 − a2d1 + a1d2)x + a1c2y− a1d2
a1c2 − a2c1

(Derived by writing xy ≥ / ≤ Aw + Bx + Cy + D for unknown A,B,C,D
and enforcing the equivalence to the linear inequalities)
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Relation Types
For product detection, we use several types of relations:

Implied relation
Linear relation between 2 variables ac-
tivated by a binary variable:
x = f ⇒ āw + c̄y ≤ d̄;

Hashtable with
3 sorted vari-
ables as keys

Implied bound
Variable bound activated by a binary
variable:
x = f ⇒ āw ≤ d̄;

Sorted array
for each vari-
able

Clique
If binary variables xi, i ∈ C and !xi,
i ∈ Cr are in a clique, then:

∑
i∈C

xi +∑
i∈Cr

(1− xi) ≤ 1

Clique table

Also linear constraints with 2 or 3 nonzeros and global variable bounds.

(f - binary constant)
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Detecting Hidden Products
• Find implied relations x = f ⇒ ā1w + c̄1y ≤ d̄1 among constraints

with 3 nonzeroes and at least one binary variable.
• For each implied relation, look for the second relation:

- It must be implied by x =!f and contain w or w and y

Product relations can also be described without a size 3 constraint:

• For each implied bound x = f ⇒ w ≤ d̄1, look for the second
relation:

- unconditional relation of w and y (implied bound, clique, linear
constraint with 2 nonzeroes).

Variable order matters: depending on the choice of w, x and y, we get
different products.
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Separation of RLT Cuts

When replacing a1x1x2 + ar · xrx2 ≤ bx2 with

a1w12 + Lunder(ar · xrx2) ≤ bx2,

the cut can be violated if a1x1x2 < a1w12.
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Separation Algorithm
• For each variable xj that appears in products:

- For each violated product relation with xixj, mark constraints of
xi where ai has the right sign.

- The marks tell us which combinations of bound factors and sides
to use for cut generation.

- For each marked row:
* Construct cuts with suitable sides and multipliers;
* If a cut is violated, add it to the cut pool.

If several linearisations are available: use the most violated.

For example:

x1 ≤ 0, x1x2 ≤ w, x2 ∈ [1, 2]

Reformulations are: x1(x2 − 1) ≤ 0, x1(2− x2) ≤ 0

If at LP solution x∗1x∗2 > w∗, use only the second reformulation.
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Term Linearisation

• Replace xixj by:
- linearisation L(wij, xi, xj), if it exists in the right direction;
- clique relationship if xi and xj are binary and clique exists:

- xi + xj ≤ 1 ⇒ xixj = 0,
- xi + (1− xj) ≤ 1 ⇒ xixj = xi,
- (1− xi) + xj ≤ 1 ⇒ xixj = xj,
- (1− xi) + (1− xj) ≤ 1 ⇒ xixj = xi + xj − 1;

- McCormick envelopes otherwise.
• Replace x2j by:

- xj if xj is binary
- Tangent for underestimation and secant for overestimation
otherwise
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Projection

McCormick is tight if at least one of the variables is at bound ⇒
replacing such a product does not add to the violation.

Construct a smaller system by fixing all variables that are at bound:
n∑

i=1
aixi ≤ b becomes

∑
i∈!B

aixi ≤ b−
∑
i∈B

aix∗i ,

!B - indices of variables not at bound,
B - indices of variables at bound.

Check violation for projected cuts first.

However...
if McCormick constraints are dynamically added as cuts, the above does

not hold ⇒ some violated cuts might be ignored.
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Computational Results - Setup

• Using a development version of SCIP;

• Linear solver SoPlex;

• Time limit 1/2 hour.

• Testsets: subsets of MINLPLib and MIPLIB2017 where (either explicit
or implicit) bilinear products exist.
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Computational Results - Implicit Products
Settings:
• Off: RLT cuts are disabled
• Existing: RLT cuts are added only for products that exist explicitly in

the problem
• Hidden: RLT cuts are added for both explicit and implicit products

Linear instances:
Setting Solved T N T_100 N_100 T_1000 N_1000

Off 174 46.35 1363 412.3 10022 1104.9 24052
Hidden 177 48.76 1392 414.2 9491 1069.9 19470

Nonlinear instances:
Setting Solved T N

Off 869 51.38 2698
Existing 890 47.01 2331
Hidden 892 48.82 2396
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Computational Results - Separation Algorithm
Settings:
• RLT cuts for both existing and hidden products are enabled
• SimpleSepa: a straightforward separation algorithm is used
• NewSepa: the new separation algorithm is used

Linear instances:

Setting Solved T N
SimpleSepa 154 94.57 1180

NewSepa 174 49.82 1448

Nonlinear instances:

Setting Solved T N
SimpleSepa 902 45.61 2188

NewSepa 898 46.23 2373
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Computational Results - Projection
Settings:
• RLT cuts for both existing and hidden products are enabled
• NoProject: the projected LP is not used
• Project: the projected LP is used

Linear instances:

Setting Solved T N
NoProject 173 49.69 1463

Project 176 48.90 1424

Nonlinear instances:

Setting Solved T N
NoProject 886 48.00 2374

Project 888 48.43 2424
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Summary

• Implicit product relations are detected by analysing MILP constraints.
• Use row marking to speed up separation.
• Use a projected LP to speed up separation and filter out cuts that are

less promising.
• RLT cuts improve performance for difficult MILP instances; the

separation algorithm is crucial.
• RLT cuts help on MINLP instances; however, adding cuts derived

from implicit products as well as utilising the new separation algorithm
appears to be slightly detrimental to performance.
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