Perspective Cuts for Generalized On/Off Constraints

Ksenia Bestuzheva¹, Ambros Gleixner^{1,2}, Stefan Vigerske³

¹Zuse Institute Berlin, ²HTW Berlin, ³GAMS bestuzheva@zib.de,gleixner@zib.de,svigerske@gams.com

Mixed Integer Programming Workshop May 24, 2023

Mixed-Integer Nonlinear Programming

$$\begin{split} \min \boldsymbol{c}^{\mathsf{T}}\boldsymbol{x} \\ \text{s.t. } \boldsymbol{g}_k(\mathbf{x}, \mathbf{y}, \mathbf{z}) &\leq 0 \ \forall k \in \mathcal{C}, \\ & (\underline{x}_i^1 - x_i^0) \boldsymbol{z}_k \leq x_i - x_i^0 \leq (\overline{x}_i^1 - x_i^0) \boldsymbol{z}_k, \ \forall i \in \mathcal{S}_k, \ \forall k \in \mathcal{I}, \\ & \mathbf{x} \in [\underline{\mathbf{x}}, \overline{\mathbf{x}}], \ \mathbf{y} \in [\underline{\mathbf{y}}, \overline{\mathbf{y}}], \\ & \mathbf{x} \in \mathbb{R}^n, \mathbf{y} \in \mathbb{R}^p, \mathbf{z} \in \{0, 1\}^q. \end{split}$$

• The functions $g_k : [\underline{\mathbf{x}}, \overline{\mathbf{x}}] \times [\underline{\mathbf{y}}, \overline{\mathbf{y}}] \times \{0, 1\}^q \to \mathbb{R}$ can be

and are given in algebraic form.

• Our approaches are aimed to be applied within an LP-based spatial branch & bound algorithm.

Semicontinuous Variables

SC variables x are defined by the following relations:

$$(\underline{\mathbf{x}}^1 - \mathbf{x}^0) \mathbf{z} \le \mathbf{x} - \mathbf{x}^0 \le (\overline{\mathbf{x}}^1 - \mathbf{x}^0) \mathbf{z},$$

 $\mathbf{z} \in \{0, 1\},$

where *z* - indicator variable. This implies:

$$\mathbf{x} = \mathbf{x}^0$$
 if $\mathbf{z} = 0$,
 $\mathbf{x} \in [\underline{\mathbf{x}}^1, \overline{\mathbf{x}}^1]$ if $\mathbf{z} = 1$

- The implication may be present in the problem implicitly
- SC variables can be used for describing "on" and "off" states

Constraints with SC Variables

Consider the epigraph set:

$$egin{aligned} & egin{aligned} & egi$$

Example:

$$g(x) = x^2 \le w, -1.5z \le x \le z$$

Disjunctive Formulation

- Consider continuous relaxations ($z \in [0,1]$) of an SC constraint
- Taking into account the semi-continuity of x is crucial for constructing tight relaxations
- Represent the feasible set of the SC constraint via a disjunctive formulation:

$$S^{0} = \{ (\mathbf{x}, w, z) \mid \mathbf{x} = \mathbf{x}^{0}, \ g(\mathbf{x}^{0}) \le w, \ \mathbf{z} = \mathbf{0} \},$$

$$S^{1} = \{ (\mathbf{x}, w, z) \mid \mathbf{x} \in [\underline{\mathbf{x}}^{1}, \overline{\mathbf{x}}^{1}], \ g(\mathbf{x}) \le w, \ \mathbf{z} = \mathbf{1} \},$$

$$S = S^{0} \cup S^{1}.$$

• We are interested in finding the convex hull of S

The Perspective Function

$$ilde{g}(\mathbf{x}, \mathbf{z}) = egin{cases} zg(rac{\mathbf{x}}{\mathbf{z}}) ext{ if } \mathbf{z} > 0, \ +\infty ext{ otherwise} \end{cases}$$

- $epi(\tilde{g})$ is a cone generated by epi(g)
- the perspective operator preserves convexity
- \tilde{g} is not well-defined at z = 0, but usually this can be circumvented

x z

Several dilations of the function $y = x^2$

Perspective Reformulation

If g is convex, then conv(S) can be described with the use of the perspective function:

$$cl\{ ilde{g}(\mathbf{x}, z) \leq w\},$$

 $(\underline{\mathbf{x}}^1 - \mathbf{x}^0)z \leq \mathbf{x} - \mathbf{x}^0 \leq (\overline{\mathbf{x}}^1 - \mathbf{x}^0)z,$

[Günlük, Linderoth'10]

- The closure is necessary since \tilde{g} is not well-defined at 0
- Linearize the perspective formulation at $(\mathbf{x}^*, \mathbf{z}^*) \Rightarrow$ perspective cuts [Frangioni, Gentile'06]

Our Contributions

- A cut strengthening procedure for SC constraints:
 - requires a valid linear inequality,
 - can be applied to convex and nonconvex constraints;
- a further generalisation for a broader class of constraints:
 - valid for constraints that become redundant when z = 0,
 - i.e. can be used to strengthen outer approximations of big-M constraints;
- a computational study of perspective cuts:
 - the cuts were implemented within a general-purpose solver (SCIP),
 - we used a large heterogeneous test set (MINLPLib).

- Lifted space formulation for a union of a finite number of convex sets [Ceria, Soares'99]
- Original space formulation for a union of a finite number of orthogonal convex sets [Tawarmalani, Richard, Chung'10]
- Original space formulation for a union of a box and a convex set given by an isotone function [Hijazi et al.'10]
 - Number of constraints exponential in number of variables
 - A compact relaxation works well in practice

Perspective-Based Cut Strengthening for Nonconvex Constraints

Given any valid linear inequality $ax + b \le w$ for the set $\{(x, w) \mid g(x) \le w, x \in [\underline{x}^1, \overline{x}^1]\}$, where x is semicontinuous, the inequality

$$a\mathbf{x} + b + (a\mathbf{x}^0 + b - g(\mathbf{x}^0))(\mathbf{z} - 1) \le w$$
 (*)

is valid for the disjunctive set

$$\{\mathbf{x}=\mathbf{x}^0,\ g(\mathbf{x}^0)\leq \textit{w},\ \textit{z}=0\}\cup\{\mathbf{x}\in[\underline{\mathbf{x}}^1,\overline{\mathbf{x}}^1],\ g(\mathbf{x})\leq \textit{w},\ \textit{z}=1\}.$$

- The strengthening procedure does not depend on convexity of g
- $a\mathbf{x} + b \leq w$ only needs to be valid when $\mathbf{x} \in [\underline{\mathbf{x}}^1, \overline{\mathbf{x}}^1]$ (also if $\mathbf{x}^0 \notin [\underline{\mathbf{x}}^1, \overline{\mathbf{x}}^1]$)
 - Can set z = 1 and perform bound propagation to find tighter bounds; tighter bounds \rightarrow tighter cut
- If g is convex, cut (*) is equivalent to the perspective cut from [Frangioni, Gentile, 2006]

Example Of Cut Strengthening

Cut valid for z = 1

Cut valid for $z \in \{0, 1\}$

Further Generalisation: Union of a Nonlinear Set and a Box

- Allow non-semicontinuous variables in the constraint
- Require that the constraint becomes **redundant** when z = 0

That is, consider sets of the form:

$$\begin{split} \boldsymbol{S}^{0} &= \{(\boldsymbol{w}, \mathbf{x}, \boldsymbol{z}) \mid \boldsymbol{w} \in [\underline{\boldsymbol{w}}^{0}, \overline{\boldsymbol{w}}^{0}], \ \mathbf{x} \in [\underline{\mathbf{x}}^{0}, \overline{\mathbf{x}}^{0}], \ \boldsymbol{z} = 0\}, \\ \boldsymbol{S}^{1} &= \{(\boldsymbol{w}, \mathbf{x}, \boldsymbol{z}) \mid \boldsymbol{g}(\mathbf{x}) \leq \boldsymbol{w}, \ \mathbf{x} \in [\underline{\mathbf{x}}^{1}, \overline{\mathbf{x}}^{1}], \ \boldsymbol{z} = 1\}, \end{split}$$

where $g(\mathbf{x}) \leq w$ can be viewed as an **on/off constraint** controlled by indicator *z*.

The definition focuses on the properties of the disjunctive set rather than the algebraic formulation \rightarrow detection less dependent on formulation.

Example Of Cut Strengthening - Box Case

Cut Strengthening for Non-SC On/Off Constraints

The procedure is an extension of the procedure described earlier:

Given any valid linear inequality $a\mathbf{x} + b \leq w$ for the set $\{(\mathbf{x}, w) \mid g(\mathbf{x}) \leq w, \mathbf{x} \in [\underline{\mathbf{x}}^1, \overline{\mathbf{x}}^1]\}$, we look for the tightest inequality of the form

$$a\mathbf{x} + b + \alpha(z - 1) \le w$$
 (*)

that is valid for the disjunctive set

$$\{\mathbf{w}\in[\underline{\mathbf{w}}^0,\overline{\mathbf{w}}^0], \ \mathbf{x}\in[\underline{\mathbf{x}}^0,\overline{\mathbf{x}}^0], \ z=0\}\cup\{\mathbf{x}\in[\underline{\mathbf{x}}^1,\overline{\mathbf{x}}^1], \ g(\mathbf{x})\leq \textit{w}, \ z=1\}.$$

The largest α that maintains validity is:

$$\alpha^* = \min(\mathbf{w} - \mathbf{a}\mathbf{x} - \mathbf{b}) \text{ s.t. } (\mathbf{x}, \mathbf{w}) \in [\underline{w}^0, \overline{\mathbf{w}}^0] \times [\underline{\mathbf{x}}^0, \overline{\mathbf{x}}^0].$$

Nonlinear Constraints in SCIP

- Expressions are represented as expression graphs,
- Auxiliary variables are introduced for subexpressions, used in relaxations only
- The original formulation is kept
- Nonlinear handler plugins implement specialized algorithms for specific structures
- The extended formulation has the form:

$$h_i(\mathbf{x}, \mathbf{y}, w_1, \dots, w_{i-1}, \mathbf{z}) \stackrel{<}{\equiv} w_i, \qquad i = 1, \dots, m',$$

$$\mathbf{w} \leq \mathbf{w} \leq \overline{\mathbf{w}},$$

Implementation of Strengthening for SC Constraints

- Detect SC variables:
 - analyse linear relations directly,
 - detect implications of $z_k = 0$ and $z_k = 1$ by fixing z_k and propagating all constraints.
- Detect constraints of the extended formulation:

$$h_i(\mathbf{x},\mathbf{y},w_1,\ldots,w_{i-1},\mathbf{z}) = h_{i,k}^{sc}(\mathbf{x},w_1,\ldots,w_r,z_k) + h_{i,k}^{nsc}(\mathbf{y},w_{r+1},\ldots,w_{i-1},\mathbf{z}_{\setminus k}) \stackrel{\leq}{=} w_i,$$

where h^{nsc} is linear, and all variables in h^{sc} are semi-continuous with respect to the same indicator variable.

- Dynamically separate cuts:
 - set $z_k = 1$ and propagate bounds,
 - request valid cuts from other nonlinear handlers,
 - apply the strengthening procedure to the parts of the cuts that depend on $(x, w_1, \ldots, w_r, z_k)$.

Implementation of Strengthening for Non-SC On/Off Constraints

Detect constraints of the extended formulation

$$h_i(\mathbf{x},\mathbf{y},\mathbf{w}_1,\ldots,\mathbf{w}_{i-1},\mathbf{z}) \leqq w_i,$$

which become redundant when some indicator variable $z_k = 0$. E.g., for a ' \leq ' constraint:

- use interval arithmetic to compute an upper bound \overline{h}^0 on *h* over the domain corresponding to $z_k = 0$
- if $\overline{h}^0 \leq \underline{w}_i^0$, then h_i is an on/off constraint.
- Dynamically separate cuts by applying the generalized strengthening formula.

Evaluation of Generalisation 1: Computational Setup

- Selected 186 MINLPLib instances that contain suitable structures for applying Generalisation 1
- 4 permutations of each instance + default
- Time limit one hour

Computational Results: Summary for Generalisation 1

Instances with SC structures

All	Convex	Both	Nonconvex
186	89	53	44

Solved and failed instances

	Off	Convex	Full
Solved	741	764	759
Limit	175	154	154
Fails	14	12	17

Geometric means of time and nodes

	Off	Convex	Full
Time	13.79	11.23	11.27
Relative time	1.00	0.81	0.82
Nodes	620	479	472
Relative nodes	1.00	0.77	0.76

Instances with improvement in root node dual bound

	Off	Convex	Convex	Full
Better by $> 50\%$	16	46	0	31
Better by $5-50\%$	25	39	14	11
Same within 5%	584		429	

Detailed Evaluation for Generalisation 1

	Off	Convex	Convex	Full
Instances in [0, 3600]:	5	44	20)5
Time	12.53	9.70	24.30	24.82
Relative time	1.00	0.77	1.00	1.02
Faster	95	193	43	51
Instances in [10, 3600]:	2	76	14	19
Time	70.96	45.27	57.47	59.12
Relative time	1.00	0.64	1.00	1.03
Faster	50	122	29	35
Instances in [100, 3600]:	1	00	4	9
Time	506.17	183.90	263.57	285.85
Relative time	1.00	0.36	1.00	1.08
Faster	18	64	13	15
Instances in [1000, 3600]:	4	45	1	4
Time	1444.28	425.60	814.18	1034.83
Relative time	1.00	0.29	1.00	1.27
Faster	10	32	5	5

Table: Time on subsets of affected instances

Computational Results: Performance Profiles

K. Bestuzheva, A. Gleixner, S. Vigerske

Perspective Cuts for Generalized On/Off Constraints

Effect of Tighter Bounds

Comparison between Full-noBT and Full

	Fails	Limit	Solved	$ \begin{array}{ } \mbox{RootImpr} \\ > 50\% \end{array} $	Time	Nodes
Full-noBT	16	153	761	4	34.45	2910
Full	17	154	759	25	33.68	2618

Cuts vs Reformulations: Setup

- Tested on instances where a perspective reformulation is available
- squfl* instances: second order cone formulations [Günlük, Linderoth'10]
- rsyn* and syn* instances: *e*-formulations [Furman, Sawaya, Grossman'18]:
 - replace \tilde{g} with $(\epsilon + (1 \epsilon)z)g(\frac{x}{\epsilon + (1 \epsilon)z}) \epsilon g(0)(1 z)$
 - under mild conditions, this is an equivalent reformulation
 - reformulated instances were not recognized as convex by SCIP ightarrow forced convexity recognition

Cuts vs Reformulations: Results

	Full	Reformulated	Reformulated- convex
Solved	308	253	305
Time	7.08	18.02	2.80
Relative time	1.00	2.55	0.40
Nodes	261	797	4.5
Relative nodes	1.00	3.05	0.02

Table: Comparison of perspective cuts and perspective reformulations on 310 convex instances

- The benefits of reformulations are not reduced to the benefits of the resulting cuts, even in the context of LP-based BB
- ϵ -reformulations work very well
- Reformulations must be treated carefully so that not to introduce numerical inaccuracies

Evaluation of Generalisation 2

- Selected 173 MINLPLib instances that contain suitable structures for applying Generalisation 2 that do not fit Generalisation 1
- Time limit one hour

Table: Comparison between Full and Full+Box

	Fails	Limit	Solved	Time	Nodes
Full	3	60	110	16.79	816
Full+Box	3	58	112	17.85	880

Conclusions

- We have proposed two generalisations of perspective cuts:
 - for nonconvex constraints defined by semi-continuous variables,
 - for constraints describing a union of a nonlinear set and a box
- Extensive testing on a large heterogeneous test set with a general-puspose solver confirms the effectiveness of perspective cuts
- Cuts for generalized structures have less impact than cuts for convex SC constraints
- Nonlinear reformulations can be stronger than just cuts
- Detection can be further improved