
Product and factor filtering for RLT
for bilinear and mixed-integer problems

Ksenia Bestuzheva 1, Ambros Gleixner 1,2, Tobias Achterberg 3

1Zuse Institute Berlin and 2HTW Berlin and 3Gurobi Optimization

Annual conference of the Society for Operations Research in Germany
September 1, 2023



Mixed-Integer Programs with Bilinear Products

min cTx
s.t. Ax ≤ b,

g(x,w) ≤ 0,

xixj ⋚ wij ∀(i, j) ∈ Iw, (∗)
x ≤ x ≤ x, w ≤ w ≤ w,

xj ∈ R for all j ∈ Ic, xj ∈ {0, 1} for all j ∈ Ib,

where

g - nonlinear function,
(∗) - bilinear product relations.

• We aim to improve the performance of spatial branch and bound for MI(N)LPs with bilinear products
• We focus on efficiently constructing tight linear programming (LP) relaxations

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 1 / 17



Bilinear Products

We are interested in constraints

xixj ⋚ wij ∀(i, j) ∈ Iw.

These constraints are nonlinear and nonconvex.

Applications: pooling, packing, wastewater treatment,
power systems optimisation, portfolio optimisation, etc.

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 2 / 17



Relaxations of Bilinear Products

The convex hull of xixj = wij is given by the well-known McCormick
envelopes:

wij ≥ xixj + xixj − xixj,

wij ≥ xixj + xixj − xixj,

wij ≤ xixj + xixj − xixj,

wij ≤ xixj + xixj − xixj.

This is often a weak relaxation! Use other constraints to strengthen it.

RLT (Reformulation Linearization Technique): derive cuts from product
relation + combinations of linear constraints/bounds.

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 3 / 17



RLT Cuts for Bilinear Products

We focus on RLT cuts derived by multiplying a constraint with a variable bound.

For example, multiply constraints of the problem by the lower bound factor of xj (reformulation step):
n∑

i=1

aixi(xj − xj) ≤ b(xj − xj).

Apply linearizations to each term xixj (linearization step):
• if relation xixj ⋚ wij exists with the appropriate sign, replace xixj with wij

• if the relation is violated in the right direction, this will increase cut violation
• otherwise, use a suitable reformulation or relaxation

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 4 / 17



Motivation and Contributions

• RLT cuts can provide strong dual bounds
• However, a large number of cuts is generated

• Difficult to select which cuts to apply
• LP sizes may increase dramatically
• Even separation itself can be prohibitively expensive

Contributions:
• A method for detecting implicit bilinear products in MILPs → can apply bilinear RLT also to MILPs
• A filtering technique for choosing promising implicit products
• An efficient separation algorithm that considers only potentially relevant factor combinations

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 5 / 17



Implicit Bilinear Products

A bilinear product wij = xixj, where xi is binary, can be modeled by linear constraints:

Product Implied relation Big-M constraint

wij ≥ xixj
xi = 0 ⇒ wij ≥ 0,
xj = 1 ⇒ wij ≥ xj.

−wij + xjxi ≤ 0,
−wij + xj + xjxi ≤ xj

wij ≤ xixj
xi = 0 ⇒ wij ≤ 0,
xi = 1 ⇒ wij ≤ xj.

wij − xjxi ≤ 0,
wij − xj − xjxi ≤ −xj.

Deriving product relations from linear constraints:
• Perform the reformulation in the reverse direction: derive product relations from linear constraints
• Generalize to pairs of general linear constraints with at most three variables and at least one binary variable

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 6 / 17



Redundancy Filtering

(constraint 1) wij ≤ ℓ1(xi, xj) = d1/b1 − (a1/b1)xi − (c1/b1)xj

(constraint 1) wij ≤ ℓ2(xi, xj) = d2/b2 − (a2/b2)xi − (c2/b2)xj

(implied product relation) wij ≤ q(xi, xj) =
γ

b1b2
xixj −

(
a1 − d1

b1
+

d2

b2

)
xi −

c2
b2

xj +
d2

b2

The product relation is non-redundant if:

q(xi, xj) ≤ ℓi(xi, xj), i = 1, 2 ⇔{
xj ∈ (1/γ(b1d2 − b2d1 + a1b2 − a2b1), 1/γ(b1d2 − b2d1)) if b1γ < 0,

xj ∈ (1/γ(b1d2 − b2d1), 1/γ(b1d2 − b2d1 + a1b2 − a2b1)) if b1γ > 0.

We only use products such that:
min{x∗j , xj} − max{x∗j , xj}

xj − xj
≥ 0.3,

where x∗j and x∗j are the smallest and largest values s.t. the product relation is non-redundant.

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 7 / 17



Implicit Product Example

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 8 / 17



Separation in spatial BB solvers

• LP-based BB builds LP relaxations of node sub-
problems

• (x∗,w∗) - solution of an LP relaxation
• Suppose that (x∗,w∗) violates the relation xixj ⋚

wij for some (i, j) ∈ Iw

• Need to generate cuts that separate (x∗,w∗) from
the feasible region

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 9 / 17



Separation in spatial BB solvers

• LP-based BB builds LP relaxations of node sub-
problems

• (x∗,w∗) - solution of an LP relaxation
• Suppose that (x∗,w∗) violates the relation xixj ⋚

wij for some (i, j) ∈ Iw

• Need to generate cuts that separate (x∗,w∗) from
the feasible region

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 9 / 17



Separation in spatial BB solvers

• LP-based BB builds LP relaxations of node sub-
problems

• (x∗,w∗) - solution of an LP relaxation
• Suppose that (x∗,w∗) violates the relation xixj ⋚

wij for some (i, j) ∈ Iw

• Need to generate cuts that separate (x∗,w∗) from
the feasible region

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 9 / 17



Separation in spatial BB solvers

• LP-based BB builds LP relaxations of node sub-
problems

• (x∗,w∗) - solution of an LP relaxation
• Suppose that (x∗,w∗) violates the relation xixj ⋚

wij for some (i, j) ∈ Iw

• Need to generate cuts that separate (x∗,w∗) from
the feasible region

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 9 / 17



Separation in spatial BB solvers

• LP-based BB builds LP relaxations of node sub-
problems

• (x∗,w∗) - solution of an LP relaxation
• Suppose that (x∗,w∗) violates the relation xixj ⋚

wij for some (i, j) ∈ Iw

• Need to generate cuts that separate (x∗,w∗) from
the feasible region

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 9 / 17



Separation in spatial BB solvers

• LP-based BB builds LP relaxations of node sub-
problems

• (x∗,w∗) - solution of an LP relaxation
• Suppose that (x∗,w∗) violates the relation xixj ⋚

wij for some (i, j) ∈ Iw

• Need to generate cuts that separate (x∗,w∗) from
the feasible region

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 9 / 17



Separation in spatial BB solvers

• LP-based BB builds LP relaxations of node sub-
problems

• (x∗,w∗) - solution of an LP relaxation
• Suppose that (x∗,w∗) violates the relation xixj ⋚

wij for some (i, j) ∈ Iw

• Need to generate cuts that separate (x∗,w∗) from
the feasible region

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 9 / 17



How to Separate RLT Cuts More Efficiently

Issue: too many RLT cuts, even separation can become extremely expensive.

Consider:
• A reformulated constraint

∑
i aixixj ≤ bxj (always satisfied at (x∗,w∗))

• Product relations xixj = wij

Perform the linearization step:
• aixjxj → aiwij

• For simplicity assume that all product relations exist with equality
• RLT cut:

∑
i aiwij ≤ bxj

The cut can be violated at the current LP solution only if aix∗i x∗j < aiw∗
ij for some i

The key idea is to process as few as possible constraint + factor combinations.

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 10 / 17



Separation Algorithm
The standard algorithm considers every linear constraint in the problem for each variable that participates in
bilinear products. This may become very expensive!
Improved algorithm

• For each multiplier xj (that participates in bilinear products)
• For each xi appearing in violated products with xj (data structures must allow efficient access)

• Mark each linear constraint rk containing xi with le if aix∗i x∗j < aiw∗
ij and with ge otherwise

• For each marked linear constraint rk, construct an RLT cut:
using the lower bound factor if rk has an le mark
using the upper bound factor if rk has a ge mark (both at the same time is possible)

How the marks work
• Multiply by xi − xi: term +aixixj exists in the reformulated constraint
• If there is an le mark, then aix∗i x∗j < aiw∗

ij → replacement increases violation

• Multiply by xi − xi: term −aixixj exists in the reformulated constraint
• If there is a ge mark, then −aix∗i x∗j < −aiw∗

ij → replacement increases violation

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 11 / 17



Computational Setup

• Using a development version of SCIP (https://scipopt.org)
• Time limit one hour
• Testsets: subsets where (either explicit or implicit) bilinear products exist chosen from

• MINLP: 1846 MINLPLib instances
• MILP: a testset comprised of 666 instances from MIPLIB3, MIPLIB 2003, 2010 and 2017, and Cor@l

• Frequency: every 10 nodes

• Performed experiments for implicit products with Gurobi: same RLT algorithm, different implementation
• Results not directly comparable, but consistent with SCIP results

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 12 / 17

https://scipopt.org


Impact of RLT Cuts: MILP

Settings:
• Off: RLT cuts are disabled
• IERLT: RLT cuts are added for both explicit and implicit products

Off IERLT IERLT/Off
Subset instances solved time nodes solved time nodes time nodes
All 971 905 45.2 1339 909 46.7 1310 1.03 0.98
Affected 581 571 48.8 1936 575 51.2 1877 1.05 0.97
[100,tilim] 329 319 439.1 9121 323 430.7 8333 0.98 0.91
[1000,tilim] 96 88 1436.7 43060 92 1140.9 31104 0.79 0.72

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 13 / 17



Impact of RLT Cuts Derived From Explicit Products: MINLP
Settings:

• Off: RLT cuts are disabled
• ERLT: RLT cuts are added only for products that exist explicitly in the problem
• IERLT: RLT cuts are added for both explicit and implicit products

Off ERLT ERLT/Off
Subset instances solved time nodes solved time nodes time nodes
All 6622 4434 67.5 3375 4557 57.5 2719 0.85 0.81
Affected 2018 1884 18.5 1534 2007 10.6 784 0.57 0.51
[100,tilim] 861 727 519.7 35991 850 196.1 12873 0.38 0.36
[1000,tilim] 284 150 2354.8 196466 273 297.6 23541 0.13 0.12

ERLT IERLT ERLT/IERLT
Subset instances solved time nodes solved time nodes time nodes
All 6622 4565 57.0 2686 4568 57.4 2638 1.01 0.98
Affected 1738 1702 24.2 1567 1705 24.8 1494 1.02 0.95
[100,tilim] 706 670 359.9 22875 673 390.4 24339 1.09 1.06
[1000,tilim] 192 156 1493.3 99996 159 1544.7 107006 1.03 1.07

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 14 / 17



Impact of the Separation Algorithm

Settings:
• RLT cuts for both explicit and implicit products are enabled
• Marking-off: a straightforward separation algorithm is used
• Marking-on: the new separation algorithm is used

Marking-off Marking-on M-on/M-off
Test set subset instances solved time nodes solved time nodes time nodes
MILP All 949 780 124.0 952 890 45.2 1297 0.37 1.37

Affected 728 612 156.6 1118 722 46.4 1467 0.30 1.31
All-optimal 774 774 58.4 823 774 21.2 829 0.36 1.01

MINLP All 6546 4491 64.5 2317 4530 56.4 2589 0.88 1.12
Affected 3031 2949 18.5 1062 2988 14.3 1116 0.78 1.05
All-optimal 4448 4448 9.1 494 4448 7.4 502 0.81 1.02

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 15 / 17



Impact of Redundancy Filtering
Settings:

• IERLT: similar to IERLT in other tables
• RedFilter: redundancy filtering enabled

MILP: IERLT RedFilter RedFilter/IERLT
Subset instances solved time nodes solved time nodes time nodes
All 1640 1004 561.7 5564 1011 555.2 5557 0.99 1.00
Affected 501 479 227.1 6160 486 266.6 6052 0.96 0.98
[100,tilim] 669 647 552.1 5328 654 539.9 5240 0.98 0.98
[1000,tilim] 223 201 1902.8 25264 208 1783.8 23732 0.94 0.94

MINLP: IERLT RedFilter RedFilter/IERLT
Subset instances solved time nodes solved time nodes time nodes
All 713 602 53.3 2455 597 53.5 2428 1.00 0.99
Affected 238 235 54.9 2469 230 55.6 2374 1.01 0.96
[100,tilim] 166 163 419.1 15704 158 417.9 15197 1.00 0.97
[1000,tilim] 53 50 1419.8 55143 45 1477.9 52918 1.04 0.96

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 16 / 17



Summary

• Implicit product relations are detected by analysing MILP constraints
• An algorithm based on row marking efficiently separates RLT cuts
• Redundancy filtering removes implicit products that are (almost) redundant

• RLT cuts improve performance for difficult MILP instances ([1000,timelim])
• RLT cuts for explicit products considerably improve MINLP performance
• RLT cuts derived from implicit products are slightly detrimental to MINLP performance
• The separation algorithm is crucial and enables the improvements yielded by RLT
• Redundancy filtering speeds up MILP solving, but is almost performance-neutral on MINLP

Bestuzheva, Gleixner, Achterberg Product and factor filtering for RLT for bilinear and mixed-integer problems 17 / 17


