Product and factor filtering for RLT for bilinear and mixed-integer problems

Ksenia Bestuzheva ${ }^{1}$, Ambros Gleixner ${ }^{1,2}$, Tobias Achterberg ${ }^{3}$
${ }^{1}$ Zuse Institute Berlin and ${ }^{2}$ HTW Berlin and ${ }^{3}$ Gurobi Optimization

Annual conference of the Society for Operations Research in Germany September 1, 2023

Mixed-Integer Programs with Bilinear Products

$$
\begin{aligned}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & A \mathbf{x} \leq \mathbf{b} \\
& g(\mathbf{x}, \mathbf{w}) \leq 0 \\
& x_{i} x_{j} \lesseqgtr w_{i j} \forall(i, j) \in \mathcal{I}^{w}, \quad(*) \\
& \underline{\mathbf{x}} \leq \mathbf{x} \leq \overline{\mathbf{x}}, \underline{\mathbf{w}} \leq \mathbf{w} \leq \overline{\mathbf{w}} \\
& x_{j} \in \mathbb{R} \text { for all } j \in \mathcal{I}^{c}, x_{j} \in\{0,1\} \text { for all } j \in \mathcal{I}^{b},
\end{aligned}
$$

where
g - nonlinear function,
$(*)$ - bilinear product relations.

- We aim to improve the performance of spatial branch and bound for $\mathrm{MI}(\mathrm{N})$ LPs with bilinear products
- We focus on efficiently constructing tight linear programming (LP) relaxations

Bilinear Products

We are interested in constraints

$$
x_{i} x_{j} \lesseqgtr w_{i j} \forall(i, j) \in \mathcal{I}^{w} .
$$

These constraints are nonlinear and nonconvex.
Applications: pooling, packing, wastewater treatment, power systems optimisation, portfolio optimisation, etc.

Relaxations of Bilinear Products

The convex hull of $x_{i} x_{j}=w_{i j}$ is given by the well-known McCormick envelopes:

$$
\begin{aligned}
& w_{i j} \geq \underline{x}_{i} x_{j}+x_{i} \underline{x}_{j}-\underline{x}_{i} \underline{x}_{j}, \\
& w_{i j} \geq \bar{x}_{i} x_{j}+x_{i} \bar{x}_{j}-\bar{x}_{i} \bar{x}_{j}, \\
& w_{i j} \leq \underline{x}_{i} x_{j}+x_{i} \bar{x}_{j}-\underline{x}_{i} \bar{x}_{j}, \\
& w_{i j} \leq \bar{x}_{i} x_{j}+x_{i} \underline{X}_{j}-\bar{x}_{i} \underline{x}_{j} .
\end{aligned}
$$

This is often a weak relaxation! Use other constraints to strengthen it.
RLT (Reformulation Linearization Technique): derive cuts from product relation + combinations of linear constraints/bounds.

RLT Cuts for Bilinear Products

We focus on RLT cuts derived by multiplying a constraint with a variable bound.

For example, multiply constraints of the problem by the lower bound factor of x_{j} (reformulation step):

$$
\sum_{i=1}^{n} a_{i} x_{i}\left(x_{j}-\underline{x}_{j}\right) \leq b\left(x_{j}-\underline{x}_{j}\right)
$$

Apply linearizations to each term $x_{i} x_{j}$ (linearization step):

- if relation $x_{i} x_{j} \lesseqgtr w_{i j}$ exists with the appropriate sign, replace $x_{i} x_{j}$ with $w_{i j}$
- if the relation is violated in the right direction, this will increase cut violation
- otherwise, use a suitable reformulation or relaxation

Motivation and Contributions

- RLT cuts can provide strong dual bounds
- However, a large number of cuts is generated
- Difficult to select which cuts to apply
- LP sizes may increase dramatically
- Even separation itself can be prohibitively expensive

Contributions:

- A method for detecting implicit bilinear products in MILPs \rightarrow can apply bilinear RLT also to MILPs
- A filtering technique for choosing promising implicit products
- An efficient separation algorithm that considers only potentially relevant factor combinations

Implicit Bilinear Products

A bilinear product $w_{i j}=x_{i} x_{j}$, where x_{i} is binary, can be modeled by linear constraints:

Product	Implied relation	Big-M constraint
$w_{i j} \geq x_{i} x_{j}$	$x_{i}=0 \Rightarrow w_{i j} \geq 0$, $x_{j}=1 \Rightarrow w_{i j} \geq x_{j}$.	$-w_{i j}+x_{j} x_{i} \leq 0$, $-w_{i j}+x_{j}+\bar{x}_{j} x_{i} \leq \bar{x}_{j}$
$w_{i j} \leq x_{i} x_{j}$	$x_{i}=0 \Rightarrow w_{i j} \leq 0$, $x_{i}=1 \Rightarrow w_{i j} \leq x_{j}$.	$w_{i j}-\bar{x}_{j} x_{i} \leq 0$, $w_{i j}-x_{j}-\underline{x}_{j} x_{i} \leq-\underline{x}_{j}$.

Deriving product relations from linear constraints:

- Perform the reformulation in the reverse direction: derive product relations from linear constraints
- Generalize to pairs of general linear constraints with at most three variables and at least one binary variable

Redundancy Filtering

$$
\begin{array}{lr}
\text { (constraint 1) } & w_{i j} \leq \ell_{1}\left(x_{i}, x_{j}\right)=d_{1} / b_{1}-\left(a_{1} / b_{1}\right) x_{i}-\left(c_{1} / b_{1}\right) x_{j} \\
\text { (constraint 1) } & w_{i j} \leq \ell_{2}\left(x_{i}, x_{j}\right)=d_{2} / b_{2}-\left(a_{2} / b_{2}\right) x_{i}-\left(c_{2} / b_{2}\right) x_{j} \\
\text { (implied product relation) } & w_{i j} \leq q\left(x_{i}, x_{j}\right)=\frac{\gamma}{b_{1} b_{2}} x_{i} x_{j}-\left(\frac{a_{1}-d_{1}}{b_{1}}+\frac{d_{2}}{b_{2}}\right) x_{i}-\frac{c_{2}}{b_{2}} x_{j}+\frac{d_{2}}{b_{2}}
\end{array}
$$

The product relation is non-redundant if:

$$
\begin{gathered}
q\left(x_{i}, x_{j}\right) \leq \ell_{i}\left(x_{i}, x_{j}\right), i=1,2 \Leftrightarrow \\
\left\{\begin{array}{l}
x_{j} \in\left(1 / \gamma\left(b_{1} d_{2}-b_{2} d_{1}+a_{1} b_{2}-a_{2} b_{1}\right), 1 / \gamma\left(b_{1} d_{2}-b_{2} d_{1}\right)\right) \text { if } b_{1} \gamma<0 \\
x_{j} \in\left(1 / \gamma\left(b_{1} d_{2}-b_{2} d_{1}\right), 1 / \gamma\left(b_{1} d_{2}-b_{2} d_{1}+a_{1} b_{2}-a_{2} b_{1}\right)\right) \text { if } b_{1} \gamma>0 .
\end{array}\right.
\end{gathered}
$$

We only use products such that:

$$
\frac{\min \left\{\bar{x}_{j}^{*}, \bar{x}_{j}\right\}-\max \left\{\underline{x}_{j}^{*}, \underline{x}_{j}\right\}}{\bar{x}_{j}-\underline{x}_{j}} \geq 0.3
$$

where \underline{x}_{j}^{*} and \bar{x}_{j}^{*} are the smallest and largest values s.t. the product relation is non-redundant.

Implicit Product Example

Separation in spatial $B B$ solvers

- LP-based BB builds LP relaxations of node subproblems
- ($\mathrm{x}^{*}, \mathrm{w}^{*}$) - solution of an LP relaxation
- Suppose that $\left(\mathrm{x}^{*}, \mathbf{w}^{*}\right)$ violates the relation $x_{i} x_{j} \lesseqgtr$ $w_{i j}$ for some $(i, j) \in \mathcal{I}^{w}$
- Need to generate cuts that separate $\left(\mathbf{x}^{*}, \mathbf{w}^{*}\right)$ from the feasible region

Separation in spatial $B B$ solvers

- LP-based BB builds LP relaxations of node subproblems
- ($\mathrm{x}^{*}, \mathrm{w}^{*}$) - solution of an LP relaxation
- Suppose that $\left(\mathbf{x}^{*}, \mathbf{w}^{*}\right)$ violates the relation $x_{i} x_{j} \lesseqgtr$ $w_{i j}$ for some $(i, j) \in \mathcal{I}^{w}$
- Need to generate cuts that separate $\left(\mathbf{x}^{*}, \mathbf{w}^{*}\right)$ from the feasible region

Separation in spatial $B B$ solvers

- LP-based BB builds LP relaxations of node subproblems
- ($\mathrm{x}^{*}, \mathrm{w}^{*}$) - solution of an LP relaxation
- Suppose that $\left(\mathrm{x}^{*}, \mathbf{w}^{*}\right)$ violates the relation $x_{i} x_{j} \lesseqgtr$ $w_{i j}$ for some $(i, j) \in \mathcal{I}^{w}$
- Need to generate cuts that separate $\left(\mathbf{x}^{*}, \mathbf{w}^{*}\right)$ from the feasible region

Separation in spatial $B B$ solvers

- LP-based BB builds LP relaxations of node subproblems
- ($\mathrm{x}^{*}, \mathrm{w}^{*}$) - solution of an LP relaxation
- Suppose that $\left(\mathrm{x}^{*}, \mathbf{w}^{*}\right)$ violates the relation $x_{i} x_{j} \lesseqgtr$ $w_{i j}$ for some $(i, j) \in \mathcal{I}^{w}$
- Need to generate cuts that separate $\left(\mathbf{x}^{*}, \mathbf{w}^{*}\right)$ from the feasible region

Separation in spatial $B B$ solvers

- LP-based BB builds LP relaxations of node subproblems
- ($\mathrm{x}^{*}, \mathrm{w}^{*}$) - solution of an LP relaxation
- Suppose that $\left(\mathbf{x}^{*}, \mathbf{w}^{*}\right)$ violates the relation $x_{i} x_{j} \lesseqgtr$ $w_{i j}$ for some $(i, j) \in \mathcal{I}^{w}$
- Need to generate cuts that separate $\left(\mathbf{x}^{*}, \mathbf{w}^{*}\right)$ from the feasible region

Separation in spatial $B B$ solvers

- LP-based BB builds LP relaxations of node subproblems
- ($\mathrm{x}^{*}, \mathrm{w}^{*}$) - solution of an LP relaxation
- Suppose that $\left(\mathrm{x}^{*}, \mathbf{w}^{*}\right)$ violates the relation $x_{i} x_{j} \lesseqgtr$ $w_{i j}$ for some $(i, j) \in \mathcal{I}^{w}$
- Need to generate cuts that separate $\left(\mathbf{x}^{*}, \mathbf{w}^{*}\right)$ from the feasible region

Separation in spatial $B B$ solvers

- LP-based BB builds LP relaxations of node subproblems
- ($\mathrm{x}^{*}, \mathrm{w}^{*}$) - solution of an LP relaxation
- Suppose that $\left(\mathrm{x}^{*}, \mathbf{w}^{*}\right)$ violates the relation $x_{i} x_{j} \lesseqgtr$ $w_{i j}$ for some $(i, j) \in \mathcal{I}^{w}$
- Need to generate cuts that separate $\left(\mathbf{x}^{*}, \mathbf{w}^{*}\right)$ from the feasible region

How to Separate RLT Cuts More Efficiently

Issue: too many RLT cuts, even separation can become extremely expensive.

Consider:

- A reformulated constraint $\sum_{i} a_{i} x_{i} x_{j} \leq b x_{j}$ (always satisfied at $\left(\mathrm{x}^{*}, \mathrm{w}^{*}\right)$)
- Product relations $x_{i} x_{j}=w_{i j}$

Perform the linearization step:

- $a_{i} x_{j} x_{j} \rightarrow a_{i} w_{i j}$
- For simplicity assume that all product relations exist with equality
- RLT cut: $\sum_{i} a_{i} w_{i j} \leq b x_{j}$

The cut can be violated at the current LP solution only if $a_{i} x_{i}^{*} x_{j}^{*}<a_{i} w_{i j}^{*}$ for some i

The key idea is to process as few as possible constraint + factor combinations.

Separation Algorithm

The standard algorithm considers every linear constraint in the problem for each variable that participates in bilinear products. This may become very expensive!

Improved algorithm

- For each multiplier x_{j} (that participates in bilinear products)
- For each x_{i} appearing in violated products with x_{j} (data structures must allow efficient access)
- Mark each linear constraint r_{k} containing x_{i} with le if $a_{i} x_{i}^{*} x_{j}^{*}<a_{i} w_{i j}^{*}$ and with ge otherwise
- For each marked linear constraint r_{k}, construct an RLT cut:
using the lower bound factor if r_{k} has an le mark
using the upper bound factor if r_{k} has a ge mark (both at the same time is possible)
How the marks work
- Multiply by $x_{i}-\underline{x}_{i}$: term $+a_{i} x_{i} x_{j}$ exists in the reformulated constraint
- If there is an le mark, then $a_{i} x_{i}^{*} x_{j}^{*}<a_{i} w_{i j}^{*} \rightarrow$ replacement increases violation
- Multiply by $\bar{x}_{i}-x_{i}$: term $-a_{i} x_{i} x_{j}$ exists in the reformulated constraint
- If there is a ge mark, then $-a_{i} x_{i}^{*} x_{j}^{*}<-a_{i} w_{i j}^{*} \rightarrow$ replacement increases violation

Computational Setup

- Using a development version of SCIP (https://scipopt.org)
- Time limit one hour
- Testsets: subsets where (either explicit or implicit) bilinear products exist chosen from
- MINLP: 1846 MINLPLib instances
- MILP: a testset comprised of 666 instances from MIPLIB3, MIPLIB 2003, 2010 and 2017, and Cor@
- Frequency: every 10 nodes
- Performed experiments for implicit products with Gurobi: same RLT algorithm, different implementation
- Results not directly comparable, but consistent with SCIP results

Impact of RLT Cuts: MILP

Settings:

- Off: RLT cuts are disabled
- IERLT: RLT cuts are added for both explicit and implicit products

Subset	instances	Off			IERLT			IERLT / Off	
		solved	time	nodes	solved	time	nodes	time	nodes
All	971	905	45.2	1339	909	46.7	1310	1.03	0.98
Affected	581	571	48.8	1936	575	51.2	1877	1.05	0.97
[100,tilim]	329	319	439.1	9121	323	430.7	8333	0.98	0.91
[1000,tilim]	96	88	1436.7	43060	92	1140.9	31104	0.79	0.72

Impact of RLT Cuts Derived From Explicit Products: MINLP

Settings:

- Off: RLT cuts are disabled
- ERLT: RLT cuts are added only for products that exist explicitly in the problem
- IERLT: RLT cuts are added for both explicit and implicit products

Subset	instances	Off			ERLT			ERLT/Off	
		solved	time	nodes	solved	time	nodes	time	nodes
All	6622	4434	67.5	3375	4557	57.5	2719	0.85	0.81
Affected	2018	1884	18.5	1534	2007	10.6	784	0.57	0.51
[100,tilim]	861	727	519.7	35991	850	196.1	12873	0.38	0.36
[1000,tilim]	284	150	2354.8	196466	273	297.6	23541	0.13	0.12
Subset	instances	ERLT			IERLT			ERLT/IERLT	
		solved	time	nodes	solved	time	nodes	time	nodes
All	6622	4565	57.0	2686	4568	57.4	2638	1.01	0.98
Affected	1738	1702	24.2	1567	1705	24.8	1494	1.02	0.95
[100,tilim]	706	670	359.9	22875	673	390.4	24339	1.09	1.06
[1000,tilim]	192	156	1493.3	99996	159	1544.7	107006	1.03	1.07

Impact of the Separation Algorithm

Settings:

- RLT cuts for both explicit and implicit products are enabled
- Marking-off: a straightforward separation algorithm is used
- Marking-on: the new separation algorithm is used

Test set	subset	instances	Marking-off			Marking-on			M-on/M-off	
			solved	time	nodes	solved	time	nodes	time	nodes
MILP	All	949	780	124.0	952	890	45.2	1297	0.37	1.37
	Affected	728	612	156.6	1118	722	46.4	1467	0.30	1.31
	All-optimal	774	774	58.4	823	774	21.2	829	0.36	1.01
MINLP	All	6546	4491	64.5	2317	4530	56.4	2589	0.88	1.12
	Affected	3031	2949	18.5	1062	2988	14.3	1116	0.78	1.05
	All-optimal	4448	4448	9.1	494	4448	7.4	502	0.81	1.02

Impact of Redundancy Filtering

Settings:

- IERLT: similar to IERLT in other tables
- RedFilter: redundancy filtering enabled

		IERLT			RedFilter			RedFilter/IERLT	
Subset	instances	solved	time	nodes	solved	time	nodes	time	nodes
All	1640	1004	561.7	5564	1011	555.2	5557	0.99	1.00
Affected	501	479	227.1	6160	486	266.6	6052	0.96	0.98
[100,tilim]	669	647	552.1	5328	654	539.9	5240	0.98	0.98
[1000,tilim]	223	201	1902.8	25264	208	1783.8	23732	0.94	0.94
MINLP:			IERLT			RedFilter		Red	ERLT
Subset	instances	solved	time	nodes	solved	time	nodes	time	nodes
All	713	602	53.3	2455	597	53.5	2428	1.00	0.99
Affected	238	235	54.9	2469	230	55.6	2374	1.01	0.96
[100,tilim]	166	163	419.1	15704	158	417.9	15197	1.00	0.97
[1000,tilim]	53	50	1419.8	55143	45	1477.9	52918	1.04	0.96

Summary

- Implicit product relations are detected by analysing MILP constraints
- An algorithm based on row marking efficiently separates RLT cuts
- Redundancy filtering removes implicit products that are (almost) redundant
- RLT cuts improve performance for difficult MILP instances ([1000,timelim])
- RLT cuts for explicit products considerably improve MINLP performance
- RLT cuts derived from implicit products are slightly detrimental to MINLP performance
- The separation algorithm is crucial and enables the improvements yielded by RLT
- Redundancy filtering speeds up MILP solving, but is almost performance-neutral on MINLP

