Nonlinear constraints in SCIP

Ksenia Bestuzheva and Stefan Vigerske
SCIP Online Workshop 2020 - June 3, 2020

Mixed-Integer Nonlinear Programming

min ¢ x

st gk(x) <0 Vk € [m]
xi € Z VieZC|[n]
xi € [li, uj] Vi € [n]

e The functions gi : [¢,u] — R can be

convex nonconvex

and are given in algebraic form.

e SCIP solves MINLPs by spatial Branch & Bound.

The “classical” framework for (MI)NLP
in SCIP

Expression trees and graphs

cons_nonlinear stores algebraic structure of nonlinear constraints in one directed
acyclic graph:

e nodes: variables, operations, constraints
e arcs: flow of computation

Iog(x)2 + 2log(x)y + y2 e [—o0, 4]
x,y €[1,4]

Expression trees and graphs

cons_nonlinear stores algebraic structure of nonlinear constraints in one directed
acyclic graph:

e nodes: variables, operations, constraints
e arcs: flow of computation

Operators:
)) Iog(x)2 + 2log(x)y + y2 e [—o0, 4]
e variable index, constant
x,y €[1,4]

® +, —, k% =+

2 [—oo, 4]
e 2 /., P (peR), " (nez),

X?—>X|X|p1 (p>1) e

2

e exp, log
e min, max, abs °

>, 11, affine-linear, quadratic,

signomial @

(user)

Expression trees and graphs

cons_nonlinear stores algebraic structure of nonlinear constraints in one directed
acyclic graph:

e nodes: variables, operations, constraints
e arcs: flow of computation

Operators:
)) Iog(x)2 + 2log(x)y + y2 e [—o0, 4]
e variable index, constant
x,y €[1,4]

® +, —, k% =+

2 [—oo, 4]
e 2 /., P (peR), " (nez),

X?—>X|X|p1 (p>1) e

2

e exp, log
e min, max, abs °

>, 11, affine-linear, quadratic,
signomial @
e (user)

Additional constraint handler: quadratic,
abspower (x — x|x|P~, p > 1), SOC

Reformulation in cons_nonlinear (during presolve)

Goal: Reformulate constraints such that only elementary cases (convex,
concave, odd power, quadratic) remain.
Example:

g(x) = y/exp(x?) In(x2)
x1 € [0,2], X2 € [1,2]

e reformulates constraints by introducing new variables and new constraints

e other constraint handler can participate

Reformulation in cons_nonlinear (during presolve)

Goal: Reformulate constraints such that only elementary cases (convex,
concave, odd power, quadratic) remain.

Example:

g(x) = y/exp(x?) In(x2)
x1 € [0,2], X2 € [1,2]

Reformulation:

g=n

Vi =yoys

y» = exp(ya)

y3 = In(x2)
2

ya = X1

e reformulates constraints by introducing new variables and new constraints

e other constraint handler can participate

Reformulation in cons_nonlinear (during presolve)

Goal: Reformulate constraints such that only elementary cases (convex,
concave, odd power, quadratic) remain.

Example:
g(x) = y/exp(x?) In(x2) i
x1 €1[0,2], x €[1,2] 00

/]

Reformulation:

g=vn
Y1 =23 [0,In(2)e"] o —
y2 =exp(ya) [L,€']

y3 = In(x2) [0,1In(2)]

ya=xi [0, 4]

;;'
/17

L]

i
"l’l'III

i
i

e reformulates constraints by introducing new variables and new constraints

e other constraint handler can participate

Bounding: LP relaxation

e relaxing integrality
e convexifying non-convexities
e linearizing nonlinear convexities

10|
05|

05 0 15 d 25 30

Bounding: LP relaxation

e relaxing integrality
e convexifying non-convexities

e [inearizing nonlinear convexities

convex functions concave functions XK (ke2z+1) X-y

1. fractional integer variables

2. variables in violated nonconvex constraints, because
variable bounds determine the convex relaxation, e.g.,

s 5 U27£2
X<+ ——(x—4) Vxeltu].
u—1~
.

Bound Tightening

e Many constraint handler in SCIP

implement a fairly cheap bound
tightening (aka. domain propagation)
method to infer tighter variable
bounds from constraints and current

variable bounds.

Bound Tightening

e Many constraint handler in SCIP |

implement a fairly cheap bound
tightening (aka. domain propagation)
method to infer tighter variable
bounds from constraints and current
variable bounds. log(x)2 + 2log(x)y + y2 € [~o0, 4]

e cons_nonlinear utilizes the expression x,y € [1,4]

- it

graph and interval arithmetic

[1,4]

Bound Tightening

e Many constraint handler in SCIP |

implement a fairly cheap bound
tightening (aka. domain propagation)
method to infer tighter variable

bounds from constraints and current
variable bounds. log(x)? + 2log(x)y + y? € [~00, 4]
e cons_nonlinear utilizes the expression x,y € [1,4]
graph and interval arithmetic [2,23.47] N [0, 4] = [2,4]
,23. —o0, 4] = [2,
e Forward propagation:

e compute bounds on intermediate
nodes (top-down)

[0,1.39] [1,4]

[1,4]

Bound Tightening

e Many constraint handler in SCIP |

implement a fairly cheap bound
tightening (aka. domain propagation)

method to infer tighter variable

bounds from constraints and current

variable bounds. log(x)2 + 2log(x)y + y2 € [~o0, 4]
e cons_nonlinear utilizes the expression x,y €[1,4]

graph and interval arithmetic
e Forward propagation:

e compute bounds on intermediate
nodes (top-down)

e Backward propagation:

e reduce bounds using reverse
operations (bottom-up)

[0, 1.39] 11,4

[1,4]

Bound Tightening

e Many constraint handler in SCIP |

implement a fairly cheap bound
tightening (aka. domain propagation)

method to infer tighter variable

bounds from constraints and current

variable bounds. log(x)2 + 2log(x)y + y2 € [~o0, 4]
e cons_nonlinear utilizes the expression x,y €[1,4]

graph and interval arithmetic
e Forward propagation:

e compute bounds on intermediate
nodes (top-down)

e Backward propagation:

e reduce bounds using reverse
operations (bottom-up)

[0,1.39] [1,4]

[1,4]

Bound Tightening

e Many constraint handler in SCIP |

implement a fairly cheap bound
tightening (aka. domain propagation)

method to infer tighter variable

bounds from constraints and current

variable bounds. log(x)2 + 2log(x)y + y2 € [~o0, 4]
e cons_nonlinear utilizes the expression x,y €[1,4]

graph and interval arithmetic
e Forward propagation:

e compute bounds on intermediate
nodes (top-down)

e Backward propagation:

e reduce bounds using reverse
operations (bottom-up)

[0,1439156 (1, V3]

[1,4]

Further Techniques

Primal Heuristics:

e NLP solving: subnlp, nlpdiving, multistart, mpec
e MINLP solving: LNS heuristics (RENS, RINS, DINS, etc.)

e MIP solving: undercover

Further Techniques

Primal Heuristics:

e NLP solving: subnlp, nlpdiving, multistart, mpec
e MINLP solving: LNS heuristics (RENS, RINS, DINS, etc.)

e MIP solving: undercover
Tighter Relaxations:

e second-order cone upgrade of quadratic constraints

e adding KKT reformulation (using SOS1) for QPs

e x -y over 2D projections of the LP relaxation

e separation for edge-concave quadratic constraints (off by default)

e projection of LP relaxation onto convex feasible sets (off by default)

Further Techniques

Primal Heuristics:

e NLP solving: subnlp, nlpdiving, multistart, mpec
e MINLP solving: LNS heuristics (RENS, RINS, DINS, etc.)

e MIP solving: undercover
Tighter Relaxations:

e second-order cone upgrade of quadratic constraints

e adding KKT reformulation (using SOS1) for QPs

e x -y over 2D projections of the LP relaxation

e separation for edge-concave quadratic constraints (off by default)

e projection of LP relaxation onto convex feasible sets (off by default)
More Bound Tightening:

e Optimization-Based Bound Tightening: min / max x; w.r.t. LP relaxation

e nl. Optimization-Based Bound Tightening: min / max x; w.r.t. convex
NLP relaxation (off by default)

Interfaces

A MINLP can be input via

e File readers: FlatZinc*, LP*, MPS*, OSiL, PIPT, ZIMPL

e Interfaces: AMPL, C, GAMS, Java®, Julia/JuMP, Matlab (via OPTI
Toolbox), Python

SCIP can utilize this software for MINLP solving:

e NLP Solvers: Ipopt, FilterSQP, WORHP
e Automatic Differentiation: CppAD

*quadratic only
fpolynomial only

Example: Circle Packing

A new framework for NLP in SCIP
(work in progress)

by K. Bestuzheva, B. Miiller, F. Serrano, S.
Vigerske, F. Wegscheider

Problem with current implementation

Consider

min z
s.t. exp(In(1000) + 1+ xy) < z
X +y2 <2

An optimal solution:

x=—1
y=1
z = 1000

Problem with current implementation

An optimal solution:
min z

x=-1
Consider
s.t. exp(In(1000) + 1+ xy) < z y=1

4yt <2 z = 1000
SCIP reports
SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 0.08
Solving Nodes : 5
Primal Bound 1 +9.99999656552062¢+02 (3 solutions)
Dual Bound 1 +9.99999656552062e+02
Gap : 0.00 %

[nonlinear] <el>: exp((7.9077552789821368151 +1 (<x> * <y>)))-1<z>[C] <= 0;
violation: right hand side is violated by 0.000673453314561812
best solution is not feasible in original problem

x -1.00057454873626 (obj:0)
0.999425451364613 (obj:0)
z 999.999656552061 (obj:1)

[o™

Reformulated problem

Reformulation takes apart exp(In(1000) 4+ 1 + x y), thus SCIP actually solves
min z
s.t. exp(w) < z
In(1000) + 1+ xy = w
X+ y2 <2

Reformulated problem

Reformulation takes apart exp(In(1000) 4+ 1 + x y), thus SCIP actually solves

min z Violation

s.t. exp(w) <z 0.4659 - 10 ° < numerics/feastol v
In(1000) + 1+ xy =w 0.6731-10° < numerics/feastol v
X%+ y2 <2 0.6602 - 10~° < numerics/feastol v

Solution (found by <relaxation>):

x= -1.000574549
y=0.999425451
z =999.999656552
w= 6.907754936

Reformulated problem

Reformulation takes apart exp(In(1000) 4+ 1 + x y), thus SCIP actually solves

min z Violation

s.t. exp(w) <z 0.4659 - 10 ° < numerics/feastol v
In(1000) + 1+ xy =w 0.6731-10° < numerics/feastol v
X%+ y2 <2 0.6602 - 10~° < numerics/feastol v

Solution (found by <relaxation>):

x= -1.000574549
y=0.999425451
z =999.999656552
w= 6.907754936

= Explicit reformulation of constraints ...

e ... loses the connection to the original problem.

Reformulated problem

Reformulation takes apart exp(In(1000) 4+ 1 + x y), thus SCIP actually solves

min z Violation

s.t. exp(w) <z 0.4659 - 10 ° < numerics/feastol v
In(1000) + 1+ xy =w 0.6731-10° < numerics/feastol v
X%+ y2 <2 0.6602 - 10~° < numerics/feastol v

Solution (found by <relaxation>):

x= -1.000574549
y=0.999425451
z =999.999656552
w= 6.907754936

= Explicit reformulation of constraints ...

e ... loses the connection to the original problem.

e ... loses distinction between original and auxiliary variables. Thus, we may
branch on auxiliary variables.

e ... prevents simultaneous exploitation of overlapping structures.

Everything is an expression.

e ONE constraint handler: cons expr
e represent all nonlinear constraints in one expression graph (DAG)
Ihs < expression-node < rhs

e all algorithms (check, separation, propagation, etc.) work on the
expression graph
(no upgrades to specialized nonlinear constraints)

Everything is an expression.

ONE constraint handler: cons expr
represent all nonlinear constraints in one expression graph (DAG)
Ihs < expression-node < rhs

all algorithms (check, separation, propagation, etc.) work on the
expression graph

(no upgrades to specialized nonlinear constraints)

separate expression operators (4, x) and high-level structures (quadratic,
etc.)

avoid redundancy / ambiguity of expression types (classic: +, Y, linear,
quad., ...)

stronger identification of common subexpressions

Everything is an expression.

e ONE constraint handler: cons expr
e represent all nonlinear constraints in one expression graph (DAG)
Ihs < expression-node < rhs

e all algorithms (check, separation, propagation, etc.) work on the
expression graph
(no upgrades to specialized nonlinear constraints)

e separate expression operators (+, X) and high-level structures (quadratic,
etc.)

= avoid redundancy / ambiguity of expression types (classic: +, >, linear,
quad., ...)

e stronger identification of common subexpressions
Do not reformulate constraints.

e introduce auxiliary variables for the relaxation only

Enforcement

Constraint:
log(x)* + 2log(x)y + y* < 4

This formulation is used to
e check feasibility,

® presolve,

e propagate domains, ...

Enforcement

Constraint:
log(x) + 2log(x)y + y* < 4

This formulation is used to
e check feasibility,
® presolve,
e propagate domains, ...

(Implicit) Reformulation:

W1§4

log(x)” + 2log(x)y +y* = w

W1

Enforcement

Constraint:

log(x)” + 2log(x)y + y* < 4

This formulation is used to

e check feasibility,

e presolve,

® propagate domains, ...

(Implicit) Reformulation:

W1§4

wo + 2ws + ws

log(x)

log(x)y

y

2

2

wi
W2
w3

Wy

Enforcement

Constraint:

log(x)” + 2log(x)y + y* < 4

This formulation is used to
e check feasibility,
® presolve,
e propagate domains, ...

(Implicit) Reformulation:

W1§4

wo + 2ws + wa
2

Ws

wsy

2
y

log(x)

w1

w2

w3

Iz

Ws

W1

<

W3 4

2

&-@

Enforcement

Constraint:
log(x)* + 2log(x)y + y* < 4
This formulation is used to

e check feasibility, Wl
® presolve,

e propagate domains, ...

<

W3 4

(Implicit) Reformulation:

&-@

©
. ()
W2+2W3+W4: w1
2
- o
W5y — W3
2
Yy =w
log(x) = ws

Used to construct LP relaxation.

Expression handler

Each operator type (4, X, pow, etc.) is implemented by an expression
handler, which can provide a number of callbacks:

e cvaluate and differentiate expression w.r.t. operands

e interval evaluation and tighten bounds on operands

e provide linear under- and over-estimators

e inform about curvature, monotonicity, integrality

e simplify, compare, print, parse, hash, copy, etc.

Expression handler are like other SCIP plugins, thus new ones can be added by
users.

Motivating example revisited

minz s.t. exp(In(1000) + 1+ xy) <z, x* +y> <2

Classic:

presolving (5 rounds: 5 fast, 1 medium, 1 exhaustive):

0 deleted vars, O deleted constraints, 1 added constraints,...
0 implications, O cliques

presolved problem has 4 variables (0 bin, O int, O impl, 4 cont)

and 3 constraints

2 constraints of type <quadratic>

1 constraints of type <nonlinear>

[...1

SCIP Status : problem is solved [optimal solution found
Solving Time (sec) : 0.08

Solving Nodes 15

Primal Bound : +9.99999656552062e+02 (3 solutions)

Dual Bound : +9.99999656552062e+02

Gap :0.00 %

[nonlinear] <el>: exp((7.90776 + (<x> * <y>)))-1<z>[C]
violation: right hand side is v

.0006734533145

roblem

x 626 (obj:0)
y 0 25451364613 (obj:0)
z 199656552061 (obj:1)

Motivating example revisited

minz s.t. exp(In(1000) + 1+ xy) <z, x* +y> <2

Classic: New:

presolving (5 rounds: 5 fast, 1 medium, 1 exhaustive): presolving (3 rounds: 3 fast, 1 medium, 1 exhaustive):

0 deleted vars, O deleted constraints, 1 added constraints,0.deleted vars, O deleted constraints, O i

0 implications, O cliques 0 implications, O cliques

presolved problem has 4 a (0 bin, 0 int, O impl, 4 pomsdlved problem has 3 variables (0 bin, O int, O impl, 3 cont)
and 3 constraints and 2 raint

ic>

2 constraints of type <qu

1 constraints of type <nonlinear>

[...] [...]

SCIP Status : problem is solved [optimal solution foSfidP Status : problem is solved [optimal solution found]
Solving Time (sec) : 0.08 Solving Time (sec) 7

Solving Nodes 15 Solving Nodes 15

Primal Bound : +9.99999656552062e+02 (3 solutions) Primal Bound : +9.99999949950021e+02 (2 solutions)

Dual Bound : +9.99999656552062e+02 Dual Bound : +9.99999949950021e+02

Gap :0.00 % Gap 1 0.00 %

[nonlinear] <e1>: exp((7.90776 + (<x> * <y>)))-1<z>[C] <= 0;
violation: right hand side is
best solution is not fea

x 2 (objx0) 1.0000000! (obj:0)
y 1613 (objy0) 1. (obj:0)
2z 999656552061 (objzl) 999.99994 1 (obj:1)

Exploiting structure

Constraint: log(x)? + 2log(x)y + y* < 4

Smarter reformulation:

e Recognize that log(x)? + 2log(x)y + y? is convex in (log(x), y).

Exploiting structure

Constraint: log(x)® + 2log(x)y +y* < 4

Smarter reformulation:

e Recognize that log(x)? + 2log(x)y + y? is convex in (log(x), y).

= Introduce auxiliary variable for log(x) only.

w? + 2wy + y2 <4
log(x) = w

Handle w? 4 2wy + y? < 4 as convex constraint (“gradient-cuts”).

Exploiting structure

Constraint: log(x)? + 2log(x)y + y* < 4
Smarter reformulation:
e Recognize that log(x)? + 2log(x)y + y? is convex in (log(x), y).
= Introduce auxiliary variable for log(x) only.
2 2
w4+ 2wy +y° < 4
log(x) = w
Handle w? 4 2wy + y? < 4 as convex constraint (“gradient-cuts”).

Nonlinearity Handler (nlhdlrs):
e Adds additional separation and propagation algorithms for structures that
can be identified in the expression graph.

e Attached to nodes in expression graph, but does not define expressions or
constraints.

e Examples: quadratics, convex subexpressions, vertex-polyhedral

Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.

e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.

e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4

Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.

e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4

2

1. Add auxiliary variable w;y for root.

Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.

e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4

2

1. Add auxiliary variable w;y for root.
2. Run detect of all nlhdlrs on + node.

Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.

e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4

W1

w1 S 4
quadratic e
2
1. Add auxiliary variable w;y for root. a ° 0

2. Run detect of all nlhdlrs on + node.
e nlhdlr _quadratic detects a convex @ “

quadratic structure and signals success.

Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.

e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4

W1

w; < 4 .
quadratic e

W22 + 2wy + y2 <w [nlhdlr,quadratic]

1. Add
2. Run

2
auxiliary variable w; for root. E H a

detect of all nlhdlrs on 4 node. Wo
nlhdlr _quadratic detects a convex @ “
quadratic structure and signals success.

nlhdlr _quadratic adds an auxiliary variable
wy for log node. °

Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.

e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4

wy < 4 w1
)) quadratic e
wi + 2wy +y° < wy [nlhdlr,quadratic]
2
1. Add auxiliary variable w;y for root. a ° 0
2. Run detect of all nlhdlrs on + node. w2

e nlhdlr _quadratic detects a convex @ “

quadratic structure and signals success.
e nlhdlr _quadratic adds an auxiliary variable

wy for log node. °

3. Run detect of all nlhdlrs on log node.

Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.

e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4

wy < 4 w1
)) quadratic e
wi + 2wy +y° < wy [nlhdlr,quadratic]

log(x) = wo [expr_log]

1. Add auxiliary variable w;y for root.
2. Run detect of all nlhdlrs on + node.

e nlhdlr _quadratic detects a convex
quadratic structure and signals success.

e nlhdlr _quadratic adds an auxiliary variable
wy for log node.

3. Run detect of all nlhdlrs on log node.

e No specialized nlhdlr signals success.
The expression handler will be used.

Current status

Available features:

Handler for quadratic subexpressions

Handler for second-order cone structures

Handler for convex and concave subexpressions

Handler for functions on semi-continuous variables (perspective formulations)
Handler for bilinear terms (x - y over 2D projection of LP relaxation)

RLT (Reformulation-Linearization Technique) separator for bilinear terms
Separator for SDP cuts on 2 x 2 principal minors of X — xx' = 0
Linearization of products of binary variables

Symmetry detection

Support for operators cos, sin, entropy

Current status

Available features:

Handler for quadratic subexpressions

Handler for second-order cone structures

Handler for convex and concave subexpressions

Handler for functions on semi-continuous variables (perspective formulations)
Handler for bilinear terms (x - y over 2D projection of LP relaxation)

RLT (Reformulation-Linearization Technique) separator for bilinear terms
Separator for SDP cuts on 2 x 2 principal minors of X — xx' = 0
Linearization of products of binary variables

Symmetry detection

Support for operators cos, sin, entropy

Main open tasks before release:

check performance “outliers”
replacing remaining classic code by new one (in particular NLP relaxation
and NLP solver interfaces)

documentation “?”

Nonlinear constraints in SCIP

Ksenia Bestuzheva and Stefan Vigerske
SCIP Online Workshop 2020 - June 3, 2020

	The ``classical'' framework for (MI)NLP in SCIP
	A new framework for NLP in SCIP (work in progress) by K. Bestuzheva, B. Müller, F. Serrano, S. Vigerske, F. Wegscheider

