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Mixed-Integer Nonlinear Programming

min cTx

s.t. gk(x) ≤ 0 ∀k ∈ [m]

xi ∈ Z ∀i ∈ I ⊆ [n]

xi ∈ [`i , ui ] ∀i ∈ [n]

� The functions gk : [`, u]→ R can be
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nonconvex
and are given in algebraic form.

� SCIP solves MINLPs by spatial Branch & Bound.



The “classical” framework for (MI)NLP

in SCIP



Expression trees and graphs

cons nonlinear stores algebraic structure of nonlinear constraints in one directed

acyclic graph:

� nodes: variables, operations, constraints

� arcs: flow of computation

Operators:

� variable index, constant

� +, −, ∗, ÷

� ·2,
√
·, ·p (p ∈ R), ·n (n ∈ Z),

x 7→ x |x |p−1 (p > 1)

� exp, log

� min, max, abs

�

∑
,
∏

, affine-linear, quadratic,

signomial

� (user)

Additional constraint handler: quadratic,

abspower (x 7→ x|x|p−1, p > 1), SOC

log(x)2 + 2 log(x)y + y2 ∈ [−∞, 4]

x , y ∈ [1, 4]
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Reformulation in cons nonlinear (during presolve)

Goal: Reformulate constraints such that only elementary cases (convex,

concave, odd power, quadratic) remain.

Example:

g(x) =
√

exp(x2
1 ) ln(x2)

x1 ∈ [0, 2], x2 ∈ [1, 2]

Reformulation:

g =
√

y1

y1 = y2y3

[0, ln(2)e4]

y2 = exp(y4)

[1, e4]

y3 = ln(x2)

[0, ln(2)]

y4 = x2
1

[0, 4]
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� reformulates constraints by introducing new variables and new constraints

� other constraint handler can participate
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Bounding: LP relaxation

� relaxing integrality

� convexifying non-convexities

� linearizing nonlinear convexities
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Bounding: LP relaxation

� relaxing integrality

� convexifying non-convexities

� linearizing nonlinear convexities

convex functions concave functions xk (k ∈ 2Z + 1) x · y



Branching

1. fractional integer variables

2. variables in violated nonconvex constraints, because

variable bounds determine the convex relaxation, e.g.,

x2 ≤ `2 +
u2 − `2

u − `
(x − `) ∀x ∈ [`, u].
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Bound Tightening

� Many constraint handler in SCIP

implement a fairly cheap bound

tightening (aka. domain propagation)

method to infer tighter variable

bounds from constraints and current

variable bounds.

� cons nonlinear utilizes the expression

graph and interval arithmetic

� Forward propagation:

� compute bounds on intermediate

nodes (top-down)

� Backward propagation:

� reduce bounds using reverse

operations (bottom-up)
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Further Techniques

Primal Heuristics:

� NLP solving: subnlp, nlpdiving, multistart, mpec

� MINLP solving: LNS heuristics (RENS, RINS, DINS, etc.)

� MIP solving: undercover

Tighter Relaxations:

� second-order cone upgrade of quadratic constraints

� adding KKT reformulation (using SOS1) for QPs

� x · y over 2D projections of the LP relaxation

� separation for edge-concave quadratic constraints (off by default)

� projection of LP relaxation onto convex feasible sets (off by default)

More Bound Tightening:

� Optimization-Based Bound Tightening: min /max xi w.r.t. LP relaxation

� nl. Optimization-Based Bound Tightening: min /max xi w.r.t. convex

NLP relaxation (off by default)
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Interfaces

A MINLP can be input via

� File readers: FlatZinc*, LP*, MPS*, OSiL, PIP�, ZIMPL

� Interfaces: AMPL, C, GAMS, Java*, Julia/JuMP, Matlab (via OPTI

Toolbox), Python

SCIP can utilize this software for MINLP solving:

� NLP Solvers: Ipopt, FilterSQP, WORHP

� Automatic Differentiation: CppAD

*quadratic only
�polynomial only



Example: Circle Packing



A new framework for NLP in SCIP

(work in progress)

by K. Bestuzheva, B. Müller, F. Serrano, S.

Vigerske, F. Wegscheider



Problem with current implementation

Consider
min z

s.t. exp(ln(1000) + 1 + x y) ≤ z

x2 + y 2 ≤ 2

An optimal solution:

x = −1

y = 1

z = 1000

SCIP reports

SCIP Status : problem is solved [optimal solution found]

Solving Time (sec) : 0.08

Solving Nodes : 5

Primal Bound : +9.99999656552062e+02 (3 solutions)

Dual Bound : +9.99999656552062e+02

Gap : 0.00 %

[nonlinear] <e1>: exp((7.9077552789821368151 +1 (<x> * <y>)))-1<z>[C] <= 0;

violation: right hand side is violated by 0.000673453314561812

best solution is not feasible in original problem

x -1.00057454873626 (obj:0)

y 0.999425451364613 (obj:0)

z 999.999656552061 (obj:1)
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Reformulated problem

Reformulation takes apart exp(ln(1000) + 1 + x y), thus SCIP actually solves

min z

Violation

s.t. exp(w) ≤ z

0.4659 · 10−6 ≤ numerics/feastol X

ln(1000) + 1 + x y = w

0.6731 · 10−6 ≤ numerics/feastol X

x2 + y 2 ≤ 2

0.6602 · 10−6 ≤ numerics/feastol X

Solution (found by <relaxation>):

x = -1.000574549

y = 0.999425451

z = 999.999656552

w= 6.907754936

⇒ Explicit reformulation of constraints ...

� ... loses the connection to the original problem.

� ... loses distinction between original and auxiliary variables. Thus, we may

branch on auxiliary variables.

� ... prevents simultaneous exploitation of overlapping structures.
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Main Ideas

Everything is an expression.

� ONE constraint handler: cons expr

� represent all nonlinear constraints in one expression graph (DAG)

lhs ≤ expression-node ≤ rhs

� all algorithms (check, separation, propagation, etc.) work on the

expression graph

(no upgrades to specialized nonlinear constraints)

� separate expression operators (+, ×) and high-level structures (quadratic,

etc.)

⇒ avoid redundancy / ambiguity of expression types (classic: +,
∑

, linear,

quad., . . . )

� stronger identification of common subexpressions

Do not reformulate constraints.

� introduce auxiliary variables for the relaxation only
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Enforcement

Constraint:

log(x)2 + 2 log(x)y + y 2 ≤ 4

This formulation is used to

� check feasibility,

� presolve,

� propagate domains, ...

(Implicit) Reformulation: Used to con-

struct LP relaxation.

+
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Expression handler

Each operator type (+, ×, pow, etc.) is implemented by an expression

handler, which can provide a number of callbacks:

� evaluate and differentiate expression w.r.t. operands

� interval evaluation and tighten bounds on operands

� provide linear under- and over-estimators

� inform about curvature, monotonicity, integrality

� simplify, compare, print, parse, hash, copy, etc.

Expression handler are like other SCIP plugins, thus new ones can be added by

users.



Motivating example revisited

min z s.t. exp(ln(1000) + 1 + x y) ≤ z , x2 + y 2 ≤ 2

Classic:

presolving (5 rounds: 5 fast, 1 medium, 1 exhaustive):

0 deleted vars, 0 deleted constraints, 1 added constraints,...

0 implications, 0 cliques

presolved problem has 4 variables (0 bin, 0 int, 0 impl, 4 cont)

and 3 constraints

2 constraints of type <quadratic>

1 constraints of type <nonlinear>

[...]

SCIP Status : problem is solved [optimal solution found]

Solving Time (sec) : 0.08

Solving Nodes : 5

Primal Bound : +9.99999656552062e+02 (3 solutions)

Dual Bound : +9.99999656552062e+02

Gap : 0.00 %

[nonlinear] <e1>: exp((7.90776 + (<x> * <y>)))-1<z>[C] <= 0;

violation: right hand side is violated by 0.000673453314561812

best solution is not feasible in original problem

x -1.00057454873626 (obj:0)

y 0.999425451364613 (obj:0)

z 999.999656552061 (obj:1)

New:

presolving (3 rounds: 3 fast, 1 medium, 1 exhaustive):

0 deleted vars, 0 deleted constraints, 0 added constraints,...

0 implications, 0 cliques

presolved problem has 3 variables (0 bin, 0 int, 0 impl, 3 cont)

and 2 constraints

2 constraints of type <expr>

[...]

SCIP Status : problem is solved [optimal solution found]

Solving Time (sec) : 0.47

Solving Nodes : 15

Primal Bound : +9.99999949950021e+02 (2 solutions)

Dual Bound : +9.99999949950021e+02

Gap : 0.00 %

x -1.00000002499999 (obj:0)

y 1.00000002499999 (obj:0)

z 999.999949950021 (obj:1)



Motivating example revisited

min z s.t. exp(ln(1000) + 1 + x y) ≤ z , x2 + y 2 ≤ 2

Classic:

presolving (5 rounds: 5 fast, 1 medium, 1 exhaustive):

0 deleted vars, 0 deleted constraints, 1 added constraints,...

0 implications, 0 cliques

presolved problem has 4 variables (0 bin, 0 int, 0 impl, 4 cont)

and 3 constraints

2 constraints of type <quadratic>

1 constraints of type <nonlinear>

[...]

SCIP Status : problem is solved [optimal solution found]
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Solving Nodes : 5

Primal Bound : +9.99999656552062e+02 (3 solutions)

Dual Bound : +9.99999656552062e+02

Gap : 0.00 %

[nonlinear] <e1>: exp((7.90776 + (<x> * <y>)))-1<z>[C] <= 0;

violation: right hand side is violated by 0.000673453314561812

best solution is not feasible in original problem

x -1.00057454873626 (obj:0)

y 0.999425451364613 (obj:0)

z 999.999656552061 (obj:1)

New:

presolving (3 rounds: 3 fast, 1 medium, 1 exhaustive):

0 deleted vars, 0 deleted constraints, 0 added constraints,...

0 implications, 0 cliques

presolved problem has 3 variables (0 bin, 0 int, 0 impl, 3 cont)

and 2 constraints

2 constraints of type <expr>

[...]

SCIP Status : problem is solved [optimal solution found]

Solving Time (sec) : 0.47

Solving Nodes : 15

Primal Bound : +9.99999949950021e+02 (2 solutions)

Dual Bound : +9.99999949950021e+02

Gap : 0.00 %

x -1.00000002499999 (obj:0)

y 1.00000002499999 (obj:0)

z 999.999949950021 (obj:1)



Exploiting structure

Constraint: log(x)2 + 2 log(x)y + y 2 ≤ 4

Smarter reformulation:

� Recognize that log(x)2 + 2 log(x)y + y 2 is convex in (log(x), y).

⇒ Introduce auxiliary variable for log(x) only.

w 2 + 2wy + y 2 ≤ 4

log(x) = w

Handle w 2 + 2wy + y 2 ≤ 4 as convex constraint (“gradient-cuts”).

Nonlinearity Handler (nlhdlrs):

� Adds additional separation and propagation algorithms for structures that

can be identified in the expression graph.

� Attached to nodes in expression graph, but does not define expressions or

constraints.

� Examples: quadratics, convex subexpressions, vertex-polyhedral
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Nonlinearity Handler in Expression Graph

� Nodes in the expression graph can have one or several nlhdlrs attached.

� At beginning of solve, detection callbacks are run only for nodes that have

auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)2 + 2 log(x)y + y 2 ≤ 4

w1 ≤ 4

w 2
2 + 2w2y + y 2 ≤ w1 [nlhdlr quadratic]

log(x) = w2 [expr log]

1. Add auxiliary variable w1 for root.

2. Run detect of all nlhdlrs on + node.

� nlhdlr quadratic detects a convex

quadratic structure and signals success.

� nlhdlr quadratic adds an auxiliary variable

w2 for log node.

3. Run detect of all nlhdlrs on log node.

� No specialized nlhdlr signals success.

The expression handler will be used.

+

·2

log

x

×

2

·2

y

w1

quadratic

w2

expr log
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Current status

Available features:

� Handler for quadratic subexpressions

� Handler for second-order cone structures

� Handler for convex and concave subexpressions

� Handler for functions on semi-continuous variables (perspective formulations)

� Handler for bilinear terms (x · y over 2D projection of LP relaxation)

� RLT (Reformulation-Linearization Technique) separator for bilinear terms

� Separator for SDP cuts on 2× 2 principal minors of X − xxT � 0

� Linearization of products of binary variables

� Symmetry detection

� Support for operators cos, sin, entropy

� . . .

Main open tasks before release:

� check performance “outliers”

� replacing remaining classic code by new one (in particular NLP relaxation

and NLP solver interfaces)

� documentation “?”
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