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Mixed-Integer Nonlinear Programming

min ¢ x

st gk(x) <0 Vk € [m]
xi € Z VieZC|[n]
xi € [li, uj] Vi € [n]

e The functions gi : [¢,u] — R can be

convex nonconvex

and are given in algebraic form.

e SCIP solves MINLPs by spatial Branch & Bound.



The “classical” framework for (MI)NLP
in SCIP



Expression trees and graphs

cons_nonlinear stores algebraic structure of nonlinear constraints in one directed
acyclic graph:

e nodes: variables, operations, constraints
e arcs: flow of computation

Iog(x)2 + 2log(x)y + y2 e [—o0, 4]
x,y €[1,4]
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Additional constraint handler: quadratic,
abspower (x — x|x|P~, p > 1), SOC



Reformulation in cons_nonlinear (during presolve)

Goal: Reformulate constraints such that only elementary cases (convex,
concave, odd power, quadratic) remain.
Example:

g(x) = y/exp(x?) In(x2)
x1 € [0,2], X2 € [1,2]

e reformulates constraints by introducing new variables and new constraints

e other constraint handler can participate
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Reformulation in cons_nonlinear (during presolve)

Goal: Reformulate constraints such that only elementary cases (convex,
concave, odd power, quadratic) remain.

Example:
g(x) = y/exp(x?) In(x2) i
x1 €1[0,2], x €[1,2] 00

/]

Reformulation:

g=vn
Y1 =23 [0,In(2)e"] o —
y2 =exp(ya) [L,€']

y3 = In(x2) [0,1In(2)]

ya=xi [0, 4]
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e reformulates constraints by introducing new variables and new constraints

e other constraint handler can participate



Bounding: LP relaxation

e relaxing integrality
e convexifying non-convexities
e linearizing nonlinear convexities
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Bounding: LP relaxation

e relaxing integrality
e convexifying non-convexities

e [inearizing nonlinear convexities

convex functions concave functions XK (ke2z+1) X-y




1. fractional integer variables

2. variables in violated nonconvex constraints, because
variable bounds determine the convex relaxation, e.g.,

s 5 U27£2
X<+ ——(x—4) Vxeltu].
u—1~
.




Bound Tightening

e Many constraint handler in SCIP

implement a fairly cheap bound
tightening (aka. domain propagation)
method to infer tighter variable
bounds from constraints and current

variable bounds.
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Bound Tightening

e Many constraint handler in SCIP |

implement a fairly cheap bound
tightening (aka. domain propagation)

method to infer tighter variable

bounds from constraints and current

variable bounds. log(x)2 + 2log(x)y + y2 € [~o0, 4]
e cons_nonlinear utilizes the expression x,y €[1,4]

graph and interval arithmetic
e Forward propagation:

e compute bounds on intermediate
nodes (top-down)

e Backward propagation:

e reduce bounds using reverse
operations (bottom-up)

[0,1439156 (1, V3]

[1,4]



Further Techniques

Primal Heuristics:

e NLP solving: subnlp, nlpdiving, multistart, mpec
e MINLP solving: LNS heuristics (RENS, RINS, DINS, etc.)

e MIP solving: undercover
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Further Techniques

Primal Heuristics:

e NLP solving: subnlp, nlpdiving, multistart, mpec
e MINLP solving: LNS heuristics (RENS, RINS, DINS, etc.)

e MIP solving: undercover
Tighter Relaxations:

e second-order cone upgrade of quadratic constraints

e adding KKT reformulation (using SOS1) for QPs

e x -y over 2D projections of the LP relaxation

e separation for edge-concave quadratic constraints (off by default)

e projection of LP relaxation onto convex feasible sets (off by default)
More Bound Tightening:

e Optimization-Based Bound Tightening: min / max x; w.r.t. LP relaxation

e nl. Optimization-Based Bound Tightening: min / max x; w.r.t. convex
NLP relaxation (off by default)



Interfaces

A MINLP can be input via

e File readers: FlatZinc*, LP*, MPS*, OSiL, PIPT, ZIMPL

e Interfaces: AMPL, C, GAMS, Java®, Julia/JuMP, Matlab (via OPTI
Toolbox), Python

SCIP can utilize this software for MINLP solving:

e NLP Solvers: Ipopt, FilterSQP, WORHP
e Automatic Differentiation: CppAD

*quadratic only
fpolynomial only



Example: Circle Packing



A new framework for NLP in SCIP
(work in progress)

by K. Bestuzheva, B. Miiller, F. Serrano, S.
Vigerske, F. Wegscheider




Problem with current implementation

Consider

min z
s.t. exp(In(1000) + 1+ xy) < z
X +y2 <2

An optimal solution:

x=—1
y=1
z = 1000



Problem with current implementation

An optimal solution:
min z

x=-1
Consider
s.t. exp(In(1000) + 1+ xy) < z y=1

4yt <2 z = 1000
SCIP reports
SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 0.08
Solving Nodes : 5
Primal Bound 1 +9.99999656552062¢+02 (3 solutions)
Dual Bound 1 +9.99999656552062e+02
Gap : 0.00 %

[nonlinear] <el>: exp((7.9077552789821368151 +1 (<x> * <y>)))-1<z>[C] <= 0;
violation: right hand side is violated by 0.000673453314561812
best solution is not feasible in original problem

x -1.00057454873626  (obj:0)
0.999425451364613 (obj:0)
z 999.999656552061 (obj:1)

[o™



Reformulated problem

Reformulation takes apart exp(In(1000) 4+ 1 + x y), thus SCIP actually solves
min z
s.t. exp(w) < z
In(1000) + 1+ xy = w
X+ y2 <2
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Reformulated problem

Reformulation takes apart exp(In(1000) 4+ 1 + x y), thus SCIP actually solves

min z Violation

s.t. exp(w) <z 0.4659 - 10 ° < numerics/feastol v
In(1000) + 1+ xy =w  0.6731-10° < numerics/feastol v
X%+ y2 <2 0.6602 - 10~° < numerics/feastol v

Solution (found by <relaxation>):

x= -1.000574549
y=0.999425451
z =999.999656552
w= 6.907754936

= Explicit reformulation of constraints ...

e ... loses the connection to the original problem.

e ... loses distinction between original and auxiliary variables. Thus, we may
branch on auxiliary variables.

e ... prevents simultaneous exploitation of overlapping structures.



Everything is an expression.

e ONE constraint handler: cons expr
e represent all nonlinear constraints in one expression graph (DAG)
Ihs < expression-node < rhs

e all algorithms (check, separation, propagation, etc.) work on the
expression graph
(no upgrades to specialized nonlinear constraints)
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separate expression operators (4, x) and high-level structures (quadratic,
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avoid redundancy / ambiguity of expression types (classic: +, Y, linear,
quad., ...)

stronger identification of common subexpressions



Everything is an expression.

e ONE constraint handler: cons expr
e represent all nonlinear constraints in one expression graph (DAG)
Ihs < expression-node < rhs

e all algorithms (check, separation, propagation, etc.) work on the
expression graph
(no upgrades to specialized nonlinear constraints)

e separate expression operators (+, X) and high-level structures (quadratic,
etc.)

= avoid redundancy / ambiguity of expression types (classic: +, >, linear,
quad., ...)

e stronger identification of common subexpressions
Do not reformulate constraints.

e introduce auxiliary variables for the relaxation only
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Constraint:
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This formulation is used to
e check feasibility,

® presolve,

e propagate domains, ...
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Enforcement

Constraint:

log(x)” + 2log(x)y + y* < 4

This formulation is used to
e check feasibility,
® presolve,
e propagate domains, ...

(Implicit) Reformulation:

W1§4
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y
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Enforcement

Constraint:
log(x)* + 2log(x)y + y* < 4
This formulation is used to

e check feasibility, Wl
® presolve,

e propagate domains, ...

<

W3 4

(Implicit) Reformulation:

&-@

©
. ()
W2+2W3+W4: w1
2
- o
W5y — W3
2
Yy =w
log(x) = ws

Used to construct LP relaxation.



Expression handler

Each operator type (4, X, pow, etc.) is implemented by an expression
handler, which can provide a number of callbacks:

e cvaluate and differentiate expression w.r.t. operands

e interval evaluation and tighten bounds on operands

e provide linear under- and over-estimators

e inform about curvature, monotonicity, integrality

e simplify, compare, print, parse, hash, copy, etc.

Expression handler are like other SCIP plugins, thus new ones can be added by
users.



Motivating example revisited

minz s.t. exp(In(1000) + 1+ xy) <z, x* +y> <2

Classic:

presolving (5 rounds: 5 fast, 1 medium, 1 exhaustive):

0 deleted vars, O deleted constraints, 1 added constraints,...
0 implications, O cliques

presolved problem has 4 variables (0 bin, O int, O impl, 4 cont)

and 3 constraints

2 constraints of type <quadratic>

1 constraints of type <nonlinear>

[...1

SCIP Status : problem is solved [optimal solution found
Solving Time (sec) : 0.08

Solving Nodes 15

Primal Bound : +9.99999656552062e+02 (3 solutions)

Dual Bound : +9.99999656552062e+02

Gap :0.00 %

[nonlinear] <el>: exp((7.90776 + (<x> * <y>)))-1<z>[C]
violation: right hand side is v

.0006734533145

roblem

x 626 (obj:0)
y 0 25451364613  (obj:0)
z 199656552061  (obj:1)




Motivating example revisited

minz s.t. exp(In(1000) + 1+ xy) <z, x* +y> <2

Classic: New:

presolving (5 rounds: 5 fast, 1 medium, 1 exhaustive): presolving (3 rounds: 3 fast, 1 medium, 1 exhaustive):

0 deleted vars, O deleted constraints, 1 added constraints,0.deleted vars, O deleted constraints, O i

0 implications, O cliques 0 implications, O cliques

presolved problem has 4 a (0 bin, 0 int, O impl, 4 pomsdlved problem has 3 variables (0 bin, O int, O impl, 3 cont)
and 3 constraints and 2 raint

ic>

2 constraints of type <qu

1 constraints of type <nonlinear>

[...] [...]

SCIP Status : problem is solved [optimal solution foSfidP Status : problem is solved [optimal solution found]
Solving Time (sec) : 0.08 Solving Time (sec) 7

Solving Nodes 15 Solving Nodes 15

Primal Bound : +9.99999656552062e+02 (3 solutions)  Primal Bound : +9.99999949950021e+02 (2 solutions)

Dual Bound : +9.99999656552062e+02 Dual Bound : +9.99999949950021e+02

Gap :0.00 % Gap 1 0.00 %

[nonlinear] <e1>: exp((7.90776 + (<x> * <y>)))-1<z>[C] <= 0;
violation: right hand side is
best solution is not fea

x 2 (objx0) 1.0000000! (obj:0)
y 1613 (objy0) 1. (obj:0)
2z 999656552061  (objzl) 999.99994 1 (obj:1)



Exploiting structure

Constraint: log(x)? + 2log(x)y + y* < 4

Smarter reformulation:

e Recognize that log(x)? + 2log(x)y + y? is convex in (log(x), y).
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log(x) = w

Handle w? 4 2wy + y? < 4 as convex constraint (“gradient-cuts”).



Exploiting structure

Constraint: log(x)? + 2log(x)y + y* < 4
Smarter reformulation:
e Recognize that log(x)? + 2log(x)y + y? is convex in (log(x), y).
= Introduce auxiliary variable for log(x) only.
2 2
w4+ 2wy +y° < 4
log(x) = w
Handle w? 4 2wy + y? < 4 as convex constraint (“gradient-cuts”).

Nonlinearity Handler (nlhdlrs):
e Adds additional separation and propagation algorithms for structures that
can be identified in the expression graph.

e Attached to nodes in expression graph, but does not define expressions or
constraints.

e Examples: quadratics, convex subexpressions, vertex-polyhedral



Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.

e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.
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Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.

e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4

W1

w; < 4 .
quadratic e

W22 + 2wy + y2 <w [nlhdlr,quadratic]

1. Add
2. Run

2
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quadratic structure and signals success.
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Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.

e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4

wy < 4 w1
) ) quadratic e
wi + 2wy +y° < wy [nlhdlr,quadratic]
2
1. Add auxiliary variable w;y for root. a ° 0
2. Run detect of all nlhdlrs on + node. w2

e nlhdlr _quadratic detects a convex @ “

quadratic structure and signals success.
e nlhdlr _quadratic adds an auxiliary variable

wy for log node. °

3. Run detect of all nlhdlrs on log node.



Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.

e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4

wy < 4 w1
) ) quadratic e
wi + 2wy +y° < wy [nlhdlr,quadratic]

log(x) = wo [expr_log]

1. Add auxiliary variable w;y for root.
2. Run detect of all nlhdlrs on + node.

e nlhdlr _quadratic detects a convex
quadratic structure and signals success.

e nlhdlr _quadratic adds an auxiliary variable
wy for log node.

3. Run detect of all nlhdlrs on log node.

e No specialized nlhdlr signals success.
The expression handler will be used.



Current status

Available features:

Handler for quadratic subexpressions

Handler for second-order cone structures

Handler for convex and concave subexpressions

Handler for functions on semi-continuous variables (perspective formulations)
Handler for bilinear terms (x - y over 2D projection of LP relaxation)

RLT (Reformulation-Linearization Technique) separator for bilinear terms
Separator for SDP cuts on 2 x 2 principal minors of X — xx' = 0
Linearization of products of binary variables

Symmetry detection

Support for operators cos, sin, entropy



Current status

Available features:

Handler for quadratic subexpressions

Handler for second-order cone structures

Handler for convex and concave subexpressions

Handler for functions on semi-continuous variables (perspective formulations)
Handler for bilinear terms (x - y over 2D projection of LP relaxation)

RLT (Reformulation-Linearization Technique) separator for bilinear terms
Separator for SDP cuts on 2 x 2 principal minors of X — xx' = 0
Linearization of products of binary variables

Symmetry detection

Support for operators cos, sin, entropy

Main open tasks before release:

check performance “outliers”
replacing remaining classic code by new one (in particular NLP relaxation
and NLP solver interfaces)

documentation “?”
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