Nonlinear constraints in SCIP

Ksenia Bestuzheva and Stefan Vigerske
SCIP Online Workshop 2020 • June 3, 2020

Mixed-Integer Nonlinear Programming

$\min c^{\top} x$

$$
\begin{array}{llr}
\text { s.t. } & g_{k}(x) \leq 0 & \forall k \in[m] \\
x_{i} \in \mathbb{Z} & \forall i \in \mathcal{I} \subseteq[n] \\
& x_{i} \in\left[\ell_{i}, u_{i}\right] & \forall i \in[n]
\end{array}
$$

- The functions $g_{k}:[\ell, u] \rightarrow \mathbb{R}$ can be

and are given in algebraic form.
- SCIP solves MINLPs by spatial Branch \& Bound.

The "classical" framework for (MI)NLP in SCIP

Expression trees and graphs

cons_nonlinear stores algebraic structure of nonlinear constraints in one directed acyclic graph:

- nodes: variables, operations, constraints
- arcs: flow of computation

$$
\begin{aligned}
\log (x)^{2}+2 \log (x) y+y^{2} & \in[-\infty, 4] \\
x, y & \in[1,4]
\end{aligned}
$$

Expression trees and graphs

cons_nonlinear stores algebraic structure of nonlinear constraints in one directed acyclic graph:

- nodes: variables, operations, constraints
- arcs: flow of computation

Operators:

- variable index, constant

$$
\begin{aligned}
\log (x)^{2}+2 \log (x) y+y^{2} & \in[-\infty, 4] \\
x, y & \in[1,4]
\end{aligned}
$$

- $+,-, *, \div$
- . ${ }^{2}, \sqrt{\cdot},{ }^{p}(p \in \mathbb{R}),{ }^{n}(n \in \mathbb{Z})$, $x \mapsto x|x|^{p-1}(p>1)$
- exp, log
- min, max, abs
- \sum, Π, affine-linear, quadratic, signomial
- (user)

Expression trees and graphs

cons_nonlinear stores algebraic structure of nonlinear constraints in one directed acyclic graph:

- nodes: variables, operations, constraints
- arcs: flow of computation

Operators:

- variable index, constant

$$
\begin{aligned}
\log (x)^{2}+2 \log (x) y+y^{2} & \in[-\infty, 4] \\
x, y & \in[1,4]
\end{aligned}
$$

- $+,-, *, \div$
- . ${ }^{2}, \sqrt{\cdot},{ }^{p}(p \in \mathbb{R}),{ }^{n}(n \in \mathbb{Z})$, $x \mapsto x|x|^{p-1}(p>1)$
- exp, log
- min, max, abs
- \sum, Π, affine-linear, quadratic, signomial
- (user)

Additional constraint handler: quadratic, abspower $\left(x \mapsto x|x|^{p-1}, p>1\right)$, SOC

Reformulation in cons_nonlinear (during presolve)

Goal: Reformulate constraints such that only elementary cases (convex, concave, odd power, quadratic) remain.

Example:

$$
\begin{aligned}
& g(x)=\sqrt{\exp \left(x_{1}^{2}\right) \ln \left(x_{2}\right)} \\
& x_{1} \in[0,2], \quad x_{2} \in[1,2]
\end{aligned}
$$

- reformulates constraints by introducing new variables and new constraints
- other constraint handler can participate

Reformulation in cons_nonlinear (during presolve)

Goal: Reformulate constraints such that only elementary cases (convex, concave, odd power, quadratic) remain.

Example:

$$
\begin{aligned}
& g(x)=\sqrt{\exp \left(x_{1}^{2}\right) \ln \left(x_{2}\right)} \\
& x_{1} \in[0,2], \quad x_{2} \in[1,2]
\end{aligned}
$$

Reformulation:

$$
\begin{aligned}
g & =\sqrt{y_{1}} \\
y_{1} & =y_{2} y_{3} \\
y_{2} & =\exp \left(y_{4}\right) \\
y_{3} & =\ln \left(x_{2}\right) \\
y_{4} & =x_{1}^{2}
\end{aligned}
$$

- reformulates constraints by introducing new variables and new constraints
- other constraint handler can participate

Reformulation in cons_nonlinear (during presolve)

Goal: Reformulate constraints such that only elementary cases (convex, concave, odd power, quadratic) remain.

Example:

$$
\begin{aligned}
& g(x)=\sqrt{\exp \left(x_{1}^{2}\right) \ln \left(x_{2}\right)} \\
& x_{1} \in[0,2], \quad x_{2} \in[1,2]
\end{aligned}
$$

Reformulation:

$$
\left.\begin{array}{lll}
g & =\sqrt{y_{1}} & \\
y_{1} & =y_{2} y_{3} & \\
y_{2} & =\exp \left(y_{4}\right) & {\left[1, \ln (2) e^{4}\right]} \\
y_{3} & =\ln \left(x_{2}\right) & \\
y_{4} & =x_{1}^{2} &
\end{array} 0, \ln (2)\right] \quad[0,4]
$$

- reformulates constraints by introducing new variables and new constraints
- other constraint handler can participate

Bounding: LP relaxation

- relaxing integrality
- convexifying non-convexities
- linearizing nonlinear convexities

Bounding: LP relaxation

- relaxing integrality
- convexifying non-convexities
- linearizing nonlinear convexities
convex functions concave functions

$x^{k} \quad(k \in 2 \mathbb{Z}+1)$

Branching

1. fractional integer variables
2. variables in violated nonconvex constraints, because variable bounds determine the convex relaxation, e.g.,

$$
x^{2} \leq \ell^{2}+\frac{u^{2}-\ell^{2}}{u-\ell}(x-\ell) \quad \forall x \in[\ell, u]
$$

Bound Tightening

- Many constraint handler in SCIP implement a fairly cheap bound tightening (aka. domain propagation) method to infer tighter variable bounds from constraints and current
 variable bounds.

Bound Tightening

- Many constraint handler in SCIP implement a fairly cheap bound tightening (aka. domain propagation) method to infer tighter variable bounds from constraints and current variable bounds.
- cons_nonlinear utilizes the expression graph and interval arithmetic

$$
\begin{aligned}
\log (x)^{2}+2 \log (x) y+y^{2} & \in[-\infty, 4] \\
x, y & \in[1,4]
\end{aligned}
$$

Bound Tightening

- Many constraint handler in SCIP implement a fairly cheap bound tightening (aka. domain propagation) method to infer tighter variable bounds from constraints and current variable bounds.
- cons_nonlinear utilizes the expression graph and interval arithmetic
- Forward propagation:
- compute bounds on intermediate nodes (top-down)

Bound Tightening

- Many constraint handler in SCIP implement a fairly cheap bound tightening (aka. domain propagation) method to infer tighter variable bounds from constraints and current variable bounds.
- cons_nonlinear utilizes the expression graph and interval arithmetic
- Forward propagation:
- compute bounds on intermediate nodes (top-down)
- Backward propagation:
- reduce bounds using reverse operations (bottom-up)

$$
\begin{aligned}
\log (x)^{2}+2 \log (x) y+y^{2} & \in[-\infty, 4] \\
x, y & \in[1,4]
\end{aligned}
$$

Bound Tightening

- Many constraint handler in SCIP implement a fairly cheap bound tightening (aka. domain propagation) method to infer tighter variable bounds from constraints and current variable bounds.
- cons_nonlinear utilizes the expression graph and interval arithmetic
- Forward propagation:
- compute bounds on intermediate nodes (top-down)
- Backward propagation:
- reduce bounds using reverse operations (bottom-up)

$$
\begin{aligned}
\log (x)^{2}+2 \log (x) y+y^{2} & \in[-\infty, 4] \\
x, y & \in[1,4]
\end{aligned}
$$

Bound Tightening

- Many constraint handler in SCIP implement a fairly cheap bound tightening (aka. domain propagation) method to infer tighter variable bounds from constraints and current variable bounds.
- cons_nonlinear utilizes the expression graph and interval arithmetic
- Forward propagation:
- compute bounds on intermediate nodes (top-down)
- Backward propagation:
- reduce bounds using reverse operations (bottom-up)

$$
\begin{aligned}
\log (x)^{2}+2 \log (x) y+y^{2} & \in[-\infty, 4] \\
x, y & \in[1,4]
\end{aligned}
$$

Further Techniques

Primal Heuristics:

- NLP solving: subnlp, nlpdiving, multistart, mpec
- MINLP solving: LNS heuristics (RENS, RINS, DINS, etc.)
- MIP solving: undercover

Further Techniques

Primal Heuristics:

- NLP solving: subnlp, nlpdiving, multistart, mpec
- MINLP solving: LNS heuristics (RENS, RINS, DINS, etc.)
- MIP solving: undercover

Tighter Relaxations:

- second-order cone upgrade of quadratic constraints
- adding KKT reformulation (using SOS1) for QPs
- $x \cdot y$ over 2D projections of the LP relaxation
- separation for edge-concave quadratic constraints (off by default)
- projection of LP relaxation onto convex feasible sets (off by default)

Further Techniques

Primal Heuristics:

- NLP solving: subnlp, nlpdiving, multistart, mpec
- MINLP solving: LNS heuristics (RENS, RINS, DINS, etc.)
- MIP solving: undercover

Tighter Relaxations:

- second-order cone upgrade of quadratic constraints
- adding KKT reformulation (using SOS1) for QPs
- $x \cdot y$ over 2D projections of the LP relaxation
- separation for edge-concave quadratic constraints (off by default)
- projection of LP relaxation onto convex feasible sets (off by default)

More Bound Tightening:

- Optimization-Based Bound Tightening: min $/ \max x_{i}$ w.r.t. LP relaxation
- nl. Optimization-Based Bound Tightening: min $/ \max x_{i}$ w.r.t. convex NLP relaxation (off by default)

Interfaces

A MINLP can be input via

- File readers: FlatZinc*, LP*, MPS*, OSiL, PIP ${ }^{\dagger}$, ZIMPL
- Interfaces: AMPL, C, GAMS, Java*, Julia/JuMP, Matlab (via OPTI Toolbox), Python

SCIP can utilize this software for MINLP solving:

- NLP Solvers: Ipopt, FilterSQP, WORHP
- Automatic Differentiation: CppAD

[^0]
Example: Circle Packing

A new framework for NLP in SCIP

 (work in progress)by K. Bestuzheva, B. Müller, F. Serrano, S.
Vigerske, F. Wegscheider

Problem with current implementation

$\min z$

Consider

An optimal solution:
$x=-1$
s.t. $\exp (\ln (1000)+1+x y) \leq z$
$y=1$

$$
x^{2}+y^{2} \leq 2
$$

$$
z=1000
$$

Problem with current implementation

$\min z$
Consider

An optimal solution:
$x=-1$
s.t. $\exp (\ln (1000)+1+x y) \leq z$

$$
x^{2}+y^{2} \leq 2
$$

$y=1$
$z=1000$

SCIP reports

SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 0.08
Solving Nodes : 5
Primal Bound : +9.99999656552062e+02 (3 solutions)
Dual Bound : +9.99999656552062e+02
Gap : 0.00%
[nonlinear] <e1>: $\exp ((7.9077552789821368151+1(\langle x\rangle *\langle y\rangle)))-1<z\rangle[C]<=0$;
violation: right hand side is violated by 0.000673453314561812
best solution is not feasible in original problem

X
-1.00057454873626 (obj:0)
y 0.999425451364613 (obj:0)
z 999.999656552061 (obj:1)

Reformulated problem

Reformulation takes apart $\exp (\ln (1000)+1+x y)$, thus SCIP actually solves $\min z$

$$
\begin{array}{ll}
\text { s.t. } & \exp (w) \leq z \\
& \ln (1000)+1+x y=w \\
& x^{2}+y^{2} \leq 2
\end{array}
$$

Reformulated problem

Reformulation takes apart $\exp (\ln (1000)+1+x y)$, thus SCIP actually solves $\min z$

$$
\ln (1000)+1+x y=w
$$

$$
x^{2}+y^{2} \leq 2
$$

$$
\begin{gathered}
\text { Violation } \\
0.4659 \cdot 10^{-6} \leq \text { numerics/feastol } \checkmark \\
0.6731 \cdot 10^{-6} \leq \text { numerics/feastol } \checkmark \\
0.6602 \cdot 10^{-6} \leq \text { numerics/feastol } \checkmark
\end{gathered}
$$

s.t. $\exp (w) \leq z$

Solution (found by <relaxation>):

$$
\begin{aligned}
& x=-1.000574549 \\
& y=0.999425451 \\
& z=999.999656552 \\
& w=6.907754936
\end{aligned}
$$

Reformulated problem

Reformulation takes apart $\exp (\ln (1000)+1+x y)$, thus SCIP actually solves $\min z$

$$
\begin{gathered}
\text { Violation } \\
0.4659 \cdot 10^{-6} \leq \text { numerics/feastol } \checkmark \\
0.6731 \cdot 10^{-6} \leq \text { numerics/feastol } \checkmark \\
0.6602 \cdot 10^{-6} \leq \text { numerics/feastol } \checkmark
\end{gathered}
$$

$$
\begin{aligned}
& \text { s.t. } \\
& \qquad \begin{array}{ll}
& \ln (1000)+1+x y=w \\
& x^{2}+y^{2} \leq 2
\end{array}
\end{aligned}
$$

Solution (found by <relaxation>):

$$
\begin{aligned}
& x=-1.000574549 \\
& y=0.999425451 \\
& z=999.999656552 \\
& w=6.907754936
\end{aligned}
$$

\Rightarrow Explicit reformulation of constraints ...

- ... loses the connection to the original problem.

Reformulated problem

Reformulation takes apart $\exp (\ln (1000)+1+x y)$, thus SCIP actually solves $\min z$

Violation

$$
\begin{array}{ll}
\text { s.t. } \exp (w) \leq z & 0.4659 \cdot 10^{-6} \leq \text { numerics/feastol } \checkmark \\
\ln (1000)+1+x y=w & 0.6731 \cdot 10^{-6} \leq \text { numerics/feastol } \checkmark \\
x^{2}+y^{2} \leq 2 & 0.6602 \cdot 10^{-6} \leq \text { numerics/feastol } \checkmark
\end{array}
$$

Solution (found by <relaxation>):

$$
\begin{aligned}
& x=-1.000574549 \\
& y=0.999425451 \\
& z=999.999656552 \\
& w=6.907754936
\end{aligned}
$$

\Rightarrow Explicit reformulation of constraints ...

- ... loses the connection to the original problem.
- ... loses distinction between original and auxiliary variables. Thus, we may branch on auxiliary variables.
- ... prevents simultaneous exploitation of overlapping structures.

Main Ideas

Everything is an expression.

- ONE constraint handler: cons_expr
- represent all nonlinear constraints in one expression graph (DAG)

$$
\text { Ihs } \leq \text { expression-node } \leq \text { rhs }
$$

- all algorithms (check, separation, propagation, etc.) work on the expression graph
(no upgrades to specialized nonlinear constraints)

Main Ideas

Everything is an expression.

- ONE constraint handler: cons_expr
- represent all nonlinear constraints in one expression graph (DAG)

$$
\text { Ihs } \leq \text { expression-node } \leq \text { rhs }
$$

- all algorithms (check, separation, propagation, etc.) work on the expression graph
(no upgrades to specialized nonlinear constraints)
- separate expression operators $(+, \times)$ and high-level structures (quadratic, etc.)
\Rightarrow avoid redundancy / ambiguity of expression types (classic:,$+ \sum$, linear, quad., ...)
- stronger identification of common subexpressions

Main Ideas

Everything is an expression.

- ONE constraint handler: cons_expr
- represent all nonlinear constraints in one expression graph (DAG)

$$
\text { lhs } \leq \text { expression-node } \leq \text { rhs }
$$

- all algorithms (check, separation, propagation, etc.) work on the expression graph
(no upgrades to specialized nonlinear constraints)
- separate expression operators $(+, \times)$ and high-level structures (quadratic, etc.)
\Rightarrow avoid redundancy / ambiguity of expression types (classic:,$+ \sum$, linear, quad., ...)
- stronger identification of common subexpressions

Do not reformulate constraints.

- introduce auxiliary variables for the relaxation only

Enforcement

Constraint:

$$
\log (x)^{2}+2 \log (x) y+y^{2} \leq 4
$$

This formulation is used to

- check feasibility,
- presolve,
- propagate domains, ...

Enforcement

Constraint:

$$
\log (x)^{2}+2 \log (x) y+y^{2} \leq 4
$$

This formulation is used to

- check feasibility,
- presolve,
- propagate domains, ...
(Implicit) Reformulation:

$$
\begin{aligned}
w_{1} & \leq 4 \\
\log (x)^{2}+2 \log (x) y+y^{2} & =w_{1}
\end{aligned}
$$

Enforcement

Constraint:

$$
\log (x)^{2}+2 \log (x) y+y^{2} \leq 4
$$

This formulation is used to

- check feasibility,
- presolve,
- propagate domains, ...
(Implicit) Reformulation:

$$
\begin{aligned}
w_{1} & \leq 4 \\
w_{2}+2 w_{3}+w_{4} & =w_{1} \\
\log (x)^{2} & =w_{2} \\
\log (x) y & =w_{3} \\
y^{2} & =w_{4}
\end{aligned}
$$

Enforcement

Constraint:

$$
\log (x)^{2}+2 \log (x) y+y^{2} \leq 4
$$

This formulation is used to

- check feasibility,
- presolve,
- propagate domains, ...
(Implicit) Reformulation:

$$
\begin{aligned}
w_{1} & \leq 4 \\
w_{2}+2 w_{3}+w_{4} & =w_{1} \\
w_{5}^{2} & =w_{2} \\
w_{5} y & =w_{3} \\
y^{2} & =w_{4} \\
\log (x) & =w_{5}
\end{aligned}
$$

Enforcement

Constraint:

$$
\log (x)^{2}+2 \log (x) y+y^{2} \leq 4
$$

This formulation is used to

- check feasibility,
- presolve,
- propagate domains, ...
(Implicit) Reformulation:

$$
\begin{aligned}
w_{1} & \leq 4 \\
w_{2}+2 w_{3}+w_{4} & =w_{1} \\
w_{5}^{2} & =w_{2} \\
w_{5} y & =w_{3} \\
y^{2} & =w_{4} \\
\log (x) & =w_{5}
\end{aligned}
$$

Used to construct LP relaxation.

Expression handler

Each operator type (,$+ \times$, pow, etc.) is implemented by an expression handler, which can provide a number of callbacks:

- evaluate and differentiate expression w.r.t. operands
- interval evaluation and tighten bounds on operands
- provide linear under- and over-estimators
- inform about curvature, monotonicity, integrality
- simplify, compare, print, parse, hash, copy, etc.

Expression handler are like other SCIP plugins, thus new ones can be added by users.

Motivating example revisited

$$
\min z \quad \text { s.t. } \exp (\ln (1000)+1+x y) \leq z, x^{2}+y^{2} \leq 2
$$

Classic:

```
presolving (5 rounds: 5 fast, 1 medium, 1 exhaustive):
    0 deleted vars, 0 deleted constraints, 1 added constraints,...
    O implications, O cliques
presolved problem has 4 variables (0 bin, 0 int, 0 impl, 4 cont)
    and 3 constraints
            2 constraints of type <quadratic>
            1 \text { constraints of type <nonlinear>}
[...]
SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 0.08
Solving Nodes : 5
Primal Bound : +9.99999656552062e+02 (3 solutions)
Dual Bound : +9.99999656552062e+02
Gap : 0.00%
    [nonlinear] <e1>: exp((7.90776 + (\langlex\rangle * <y>)))-1<z> [C] <= 0;
violation: right hand side is violated by 0.000673453314561812
best solution is not feasible in original problem
```

X

-1.00057454873626	(obj :0)
0.999425451364613	(obj :0)
999.999656552061	(obj:1)

$\begin{array}{lrr}y & 9.999425451364613 \\ z & 999.999656552061 & \text { (obj:1) }\end{array}$

Motivating example revisited

$$
\min z \quad \text { s.t. } \exp (\ln (1000)+1+x y) \leq z, x^{2}+y^{2} \leq 2
$$

Classic:

New:

```
presolving (5 rounds: 5 fast, 1 medium, 1 exhaustive): presolving (3 rounds: 3 fast, 1 medium, 1 exhaustive):
    0 deleted vars, 0 deleted constraints, 1 added constraints,0.deleted vars, 0 deleted constraints, 0 added constraints,...
    O implications, 0 cliques 0 implications, 0 cliques
presolved problem has 4 variables (0 bin, 0 int, 0 impl, 4 pons\philved problem has 3 variables (0 bin, 0 int, 0 impl, 3 cont)
    and 3 constraints and 2 constraints
            2 constraints of type <quadratic> 2 constraints of type <expr>
            1 \text { constraints of type <nonlinear>}
[...]
[...]
\begin{tabular}{llll} 
SCIP Status & \(:\) problem is solved [optimal solution fosG®\# Status & : problem is solved [optimal solution found] \\
Solving Time (sec) & \(: 0.08\) & Solving Time (sec) & \(: 0.47\) \\
Solving Nodes & \(: 5\) & Solving Nodes & \(: 15\) \\
Primal Bound & \(:+9.99999656552062 e+02(3\) solutions) & Primal Bound & \(:+9.99999949950021 e+02\) (2 solutions) \\
Dual Bound & \(:+9.99999656552062 e+02\) & Dual Bound & \(:+9.99999949950021 e+02\) \\
Gap & \(: 0.00 \%\) & Gap & \(: 0.00 \%\)
\end{tabular}
    [nonlinear] <e1>: }\operatorname{exp}((7.90776+(\langlex\rangle*<y>)))-1<z> [C] <= 0
violation: right hand side is violated by 0.000673453314561812
best solution is not feasible in original problem
```

x	-1.00057454873626	(objy0)	-1.00000002499999
y	0.999425451364613	(objy0)	1.00000002499999
z	999.999656552061	$(o b j z 1)$	999.999949950021

Exploiting structure

Constraint: $\log (x)^{2}+2 \log (x) y+y^{2} \leq 4$
Smarter reformulation:

- Recognize that $\log (x)^{2}+2 \log (x) y+y^{2}$ is convex in $(\log (x), y)$.

Exploiting structure

Constraint: $\log (x)^{2}+2 \log (x) y+y^{2} \leq 4$

Smarter reformulation:

- Recognize that $\log (x)^{2}+2 \log (x) y+y^{2}$ is convex in $(\log (x), y)$.
\Rightarrow Introduce auxiliary variable for $\log (x)$ only.

$$
\begin{aligned}
w^{2}+2 w y+y^{2} & \leq 4 \\
\log (x) & =w
\end{aligned}
$$

Handle $w^{2}+2 w y+y^{2} \leq 4$ as convex constraint ("gradient-cuts").

Exploiting structure

Constraint: $\log (x)^{2}+2 \log (x) y+y^{2} \leq 4$

Smarter reformulation:

- Recognize that $\log (x)^{2}+2 \log (x) y+y^{2}$ is convex in $(\log (x), y)$.
\Rightarrow Introduce auxiliary variable for $\log (x)$ only.

$$
\begin{aligned}
w^{2}+2 w y+y^{2} & \leq 4 \\
\log (x) & =w
\end{aligned}
$$

Handle $w^{2}+2 w y+y^{2} \leq 4$ as convex constraint ("gradient-cuts").

Nonlinearity Handler (nlhdlrs):

- Adds additional separation and propagation algorithms for structures that can be identified in the expression graph.
- Attached to nodes in expression graph, but does not define expressions or constraints.
- Examples: quadratics, convex subexpressions, vertex-polyhedral

Nonlinearity Handler in Expression Graph

- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run only for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

Nonlinearity Handler in Expression Graph

- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run only for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

Constraint: $\log (x)^{2}+2 \log (x) y+y^{2} \leq 4$

Nonlinearity Handler in Expression Graph

- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run only for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

Constraint: $\log (x)^{2}+2 \log (x) y+y^{2} \leq 4$

$$
w_{1} \leq 4
$$

1. Add auxiliary variable w_{1} for root.

Nonlinearity Handler in Expression Graph

- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run only for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

Constraint: $\log (x)^{2}+2 \log (x) y+y^{2} \leq 4$

$$
w_{1} \leq 4
$$

1. Add auxiliary variable w_{1} for root.
2. Run detect of all nlhdlrs on + node.

Nonlinearity Handler in Expression Graph

- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run only for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

Constraint: $\log (x)^{2}+2 \log (x) y+y^{2} \leq 4$

$$
w_{1} \leq 4
$$

1. Add auxiliary variable w_{1} for root.
2. Run detect of all nlhdlrs on + node.

- nlhdlr_quadratic detects a convex quadratic structure and signals success.

Nonlinearity Handler in Expression Graph

- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run only for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

Constraint: $\log (x)^{2}+2 \log (x) y+y^{2} \leq 4$

$$
\begin{aligned}
w_{1} & \leq 4 \\
w_{2}^{2}+2 w_{2} y+y^{2} & \leq w_{1} \quad[\text { nlhdlr_quadratic }]
\end{aligned}
$$

1. Add auxiliary variable w_{1} for root.
2. Run detect of all nlhdlrs on + node.

- nlhdlr_quadratic detects a convex quadratic structure and signals success.
- nlhdlr_quadratic adds an auxiliary variable w_{2} for log node.

Nonlinearity Handler in Expression Graph

- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run only for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

Constraint: $\log (x)^{2}+2 \log (x) y+y^{2} \leq 4$

$$
\begin{aligned}
w_{1} & \leq 4 \\
w_{2}^{2}+2 w_{2} y+y^{2} & \leq w_{1} \quad[\text { nlhdlı_quadratic }]
\end{aligned}
$$

1. Add auxiliary variable w_{1} for root.
2. Run detect of all nlhdlrs on + node.

- nlhdlr_quadratic detects a convex quadratic structure and signals success.
- nlhdlr_quadratic adds an auxiliary variable w_{2} for log node.

3. Run detect of all nlhdlrs on log node.

Nonlinearity Handler in Expression Graph

- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run only for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

Constraint: $\log (x)^{2}+2 \log (x) y+y^{2} \leq 4$

$$
\begin{array}{rlrl}
w_{1} & \leq 4 \\
w_{2}^{2}+2 w_{2} y+y^{2} & \leq w_{1} & & {[\text { nlhdlr_quadratic }]} \\
\log (x) & =w_{2} & \quad[\text { expr_log }]
\end{array}
$$

1. Add auxiliary variable w_{1} for root.
2. Run detect of all nlhdlrs on + node.

- nlhdlr_quadratic detects a convex quadratic structure and signals success.
- nlhdlr_quadratic adds an auxiliary variable w_{2} for log node.

3. Run detect of all nlhdlrs on log node.

- No specialized nlhdlr signals success. The expression handler will be used.

Current status

Available features:

- Handler for quadratic subexpressions
- Handler for second-order cone structures
- Handler for convex and concave subexpressions
- Handler for functions on semi-continuous variables (perspective formulations)
- Handler for bilinear terms ($x \cdot y$ over 2D projection of LP relaxation)
- RLT (Reformulation-Linearization Technique) separator for bilinear terms
- Separator for SDP cuts on 2×2 principal minors of $X-x x^{\top} \succeq 0$
- Linearization of products of binary variables
- Symmetry detection
- Support for operators cos, sin, entropy
- ...

Current status

Available features:

- Handler for quadratic subexpressions
- Handler for second-order cone structures
- Handler for convex and concave subexpressions
- Handler for functions on semi-continuous variables (perspective formulations)
- Handler for bilinear terms ($x \cdot y$ over 2D projection of LP relaxation)
- RLT (Reformulation-Linearization Technique) separator for bilinear terms
- Separator for SDP cuts on 2×2 principal minors of $X-x x^{\top} \succeq 0$
- Linearization of products of binary variables
- Symmetry detection
- Support for operators cos, sin, entropy
- ...

Main open tasks before release:

- check performance "outliers"
- replacing remaining classic code by new one (in particular NLP relaxation and NLP solver interfaces)
- documentation "?"

Nonlinear constraints in SCIP

Ksenia Bestuzheva and Stefan Vigerske
SCIP Online Workshop 2020 • June 3, 2020

[^0]: *quadratic only
 $\dagger_{\text {polynomial only }}$

