Strengthening dual bounds in branch-and-bound by SONC certificates

Ksenia Bestuzheva, Ambros Gleixner, Helena Völker

SCIP 20th Anniversary Workshop
November 4, 2022

Definitions

Consider a polynomial

$$
f(x)=\sum_{\alpha \in \mathcal{A}} f_{\alpha} x^{\alpha}=\sum_{\alpha \in \mathcal{A}} f_{\alpha} x_{1}^{\alpha_{1}} . \ldots x_{n}^{\alpha_{n}}, x \in \mathbb{R}^{n}
$$

- $\mathcal{A} \subset \mathbb{N}^{n}$ - support of f
- $\operatorname{New}(f)=\operatorname{conv}\left(\left\{\alpha \in \mathcal{A} \mid f_{\alpha} \neq 0\right\}\right)-$ Newton polytope of $f(\operatorname{assume} \operatorname{New}(f)=\operatorname{conv}(\mathcal{A}))$
- $V(\mathcal{A})$ - vertices of $\operatorname{New}(f)$
- $\Delta f=\left\{\alpha \in \mathcal{A} \mid f_{\alpha} \neq 0\right.$ and $\left\{f_{\alpha}<0\right.$ or $\left.\left.\alpha \notin(2 \mathbb{N})^{n}\right\}\right\}$ - non monomial square terms

Necessary condition for nonnegativity: all vertices must be monomial squares.

Example

$$
f(x, y)=3 x^{6} y^{6}+2 x^{6}-x^{4} y^{3}-x^{3} y+5 x^{2} y^{4}-5
$$

- The figure shows $\operatorname{New}(f)$
- $\mathcal{A}=\{(6,6),(6,0),(4,3),(3,1),(2,4),(0,0)\}$
- 4 vertices: $(6,6),(6,0),(2,4),(0,0)$
- 2 points in the interior: $(4,3),(3,1)$
- $\Delta(f)=(4,3),(3,1)$

Finding Dual Bounds via Nonnegativity Certificates

$$
f(x)-\gamma \geq 0 \Leftrightarrow f(x) \geq \gamma
$$

Can find dual bound by maximising γ subject to $f(x)-\gamma \geq 0$.

- Sum of squares (SOS) is a well-known nonnegativity certificate
- SOS scales poorly with the degree of the polynomials
- An alternative: sum of nonnegative circuit polynomials (SONC) certificates
- Cost of SONC depends on number of terms, not on degree

Circuit Polynomials

$$
f(x)=\sum_{\alpha \in V(\mathcal{A})} f_{\alpha} x^{\alpha}+f_{\beta} x^{\beta}
$$

- $\alpha \in V(\mathcal{A})$ are affinely independent and are monomial squares.
- β can be written as convex combination of α : $\beta=\sum_{\alpha \in V(\mathcal{A})} \lambda_{\alpha} \alpha, \quad \lambda_{\alpha} \geq 0, \quad \sum_{\alpha \in V(\mathcal{A})} \lambda_{\alpha}=1$.

Nonnegativity of circuit polynomials:

- Circuit number $\Theta_{f}=\prod_{\alpha \in V(\mathcal{A})}\left(\frac{f_{\alpha}}{\lambda_{\alpha}}\right)^{\lambda_{\alpha}}$.
- $f(x) \geq 0 \forall x$ if and only if:
$\beta \notin(2 \mathbb{N})^{n}$ and $\left|f_{\beta}\right| \leq \Theta_{f}$ or
 $\beta \in(2 \mathbb{N})^{n}$ and $f_{\beta} \geq-\Theta_{f}$

ST-Polynomials

$$
f(x)=\sum_{\alpha \in V(\mathcal{A})} f_{\alpha} x^{\alpha}+\sum_{\beta \in \Delta f} f_{\beta} x^{\beta}
$$

is an ST-polynomial if:

- $\alpha \in V(A)$ are affinely independent and
- every $\beta \in \Delta f$ can be written as convex combination of $\alpha: \beta=\sum_{\alpha \in V(\mathcal{A})} \lambda_{\alpha} \alpha, \lambda_{\alpha} \geq 0, \sum_{\alpha \in V(\mathcal{A})} \lambda_{\alpha}=1$.

ST-polynomials are similar to circuit polynomials, except that there are several "inner" terms.

Nonnegativity of ST-Polynomials

$$
f(x)=\sum_{\alpha \in V(\mathcal{A}) \backslash 0} f_{\alpha} x^{\alpha}+f_{\alpha(0)}+\sum_{\beta \in \Delta f} f_{\beta} x^{\beta}, \alpha(0)=0
$$

Write $f(x)$ as a sum of circuit polynomials with unknown vertex coefficients:

$$
f(x)=\sum_{\beta \in \Delta f}\left(\sum_{\alpha \in n z(\beta)} a_{\beta, \alpha} x^{\alpha}+f_{\beta} x^{\beta}\right)
$$

$f(x)$ is nonnegative if for every $(\beta, \alpha) \in \Delta f \times V(\mathcal{A})$ there exists $a_{\beta, \alpha} \geq 0$ such that:

$$
\begin{gathered}
\left|f_{\beta}\right| \leq \prod_{\alpha \in n z(\beta)}\left(\frac{a_{\beta, \alpha}}{\lambda_{\alpha}^{(\beta)}}\right)^{\lambda_{\alpha}^{\beta}} . \\
f_{\alpha} \geq \sum_{\beta \in \Delta f} a_{\beta, \alpha}
\end{gathered}
$$

Geometric Programming

- Monomial function $q: \mathbb{R}_{>0}^{n} \rightarrow \mathbb{R}: q(z)=c z_{1}^{\alpha_{1}} \cdots \cdots z_{n}^{\alpha_{n}}(c>0)$
- Posynomial function $p: \mathbb{R}_{>0}^{n} \rightarrow \mathbb{R}: p(z)=\sum_{i} c_{i} Z_{1}^{\alpha_{1, i}} \cdots \cdots z_{n}^{\alpha_{n, i}}\left(c_{i}>0\right)$

A geometric program has the form:

$$
\begin{aligned}
& \min p_{0}(z) \text { subject to: } \\
& p_{i}(z) \leq 1 \text { for all } 1 \leq i \leq m \\
& q_{j}(z)=1 \text { for all } 1 \leq j \leq I
\end{aligned}
$$

where p_{i} are posynomials and q_{j} are monomial functions.
Geometric programs can be transformed into convex programs.

Nonnegativity of ST-Polynomials: Reformulation

Rewrite the conditions for nonnegativity of $f(x)-\gamma$ by:

- grouping together everything not involving any $a_{\beta, 0}$,
- using the left out conditions to formulate a lower bound on $f_{0}-\gamma$:

$$
\begin{array}{lr}
\lambda_{\alpha}^{(\beta)}>0 \Longleftrightarrow a_{\beta, \alpha}>0 & \leftarrow \text { nonzero coefficients correspond to nonzero } \lambda \\
\left|f_{\beta}\right| \leq \prod_{\alpha \in n z(\beta) \backslash 0}\left(\frac{a_{\beta, \alpha}}{\lambda_{\alpha}^{(\beta)}}\right)^{\lambda_{\alpha}^{(\beta)}}, \forall \beta \text { with } \lambda_{0}^{\beta}=0 & \leftarrow \text { circuit number condition } \\
f_{\alpha} \geq \sum_{\beta \in \Delta f} a_{\beta, \alpha}, \forall \alpha \in V(\mathcal{A}) \backslash 0 & \leftarrow \text { cannot exceed original value of coefficients } \\
f_{0}-\gamma \geq \sum_{\beta \in \Delta f, 0 \in n z(\beta)} \lambda_{0}^{(\beta)}\left|f_{\beta}\right|^{1 / \lambda_{0}^{(\beta)}} \prod_{\alpha \in n z(\beta) \backslash 0}\left(\frac{\lambda_{\alpha}^{(\beta)}}{a_{\beta, \alpha}}\right)^{\lambda_{\alpha}^{(\beta)} / \lambda_{0}^{(\beta)}} & \leftarrow \text { above two conditions for } \alpha=0
\end{array}
$$

Finding Lower Bounds on ST-Polynomials

Optimisation problem directly built upon reformulated nonnegativity conditions:

$$
\min \sum_{\beta \in \Delta f, 0 \in n z(\beta)} \lambda_{0}^{(\beta)}\left|f_{\beta}\right|^{1 / \lambda_{0}^{(\beta)}} \prod_{\alpha \in n z(\beta) \backslash 0}\left(\frac{\lambda_{\alpha}^{(\beta)}}{a_{\beta, \alpha}}\right)^{\lambda_{\alpha}^{(\beta)} / \lambda_{0}^{(\beta)}}
$$

subject to

$$
\begin{aligned}
& \left|f_{\beta}\right| \leq \prod_{\alpha \in n z(\beta) \backslash 0}\left(\frac{a_{\beta, \alpha}}{\lambda_{\alpha}^{(\beta)}}\right)^{\lambda_{\alpha}^{(\beta)}}, \forall \beta \text { with } \lambda_{0}^{\beta}=0 \\
& f_{\alpha} \geq \sum_{\beta \in \Delta f} a_{\beta, \alpha}, \forall \alpha \in V(\mathcal{A}) \backslash 0
\end{aligned}
$$

This program is a GP, i.e. can be directly transformed into a convex program!

Constrained Optimisation

Constrained polynomial optimisation problem:

$$
\begin{aligned}
& \min f(x) \\
& \text { s.t. } g_{i}(x) \geq 0 \forall i=1, \ldots, m \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

where f, g_{i} are polynomials.

Constrained Optimisation: Lagrangian Approach

$$
G(x, \mu)=-\sum_{i=0}^{m} \mu_{i} g_{i}(x),
$$

where $g_{0}(x)=-f(x)$.
Separate into monomial squares and tail terms:

$$
G(x, \mu)=\sum_{\alpha \in V(G)} G_{\alpha, \mu} x^{\alpha}+\sum_{\beta \in \Delta G} G_{\beta, \mu} x^{\beta}
$$

Support depends on μ. We will assume it to be the union of exponents existing for any $\mu \geq 0$.
Goal: find $\max _{\mu} \min _{x} G(x, \mu)$.

Lagrangian Approach: Problem Formulation

Optimisation problem over μ and a simultaneously:

$$
\min \sum_{i=1}^{m} \mu_{i} g_{i, \alpha(0)}+\sum_{\beta \in \Delta G, 0 \in n z(\beta)} \lambda_{0}^{(\beta)}\left|G_{\beta, \mu}\right|^{1 / \lambda_{0}^{(\beta)}} \prod_{\alpha \in n z(\beta) \backslash 0}\left(\frac{\lambda_{\alpha}^{(\beta)}}{a_{\beta, \alpha}}\right)^{\lambda_{\alpha}^{(\beta)} / \lambda_{0}^{(\beta)}}
$$

subject to

$$
\begin{aligned}
& \left|G_{\beta, \mu}\right| \leq \prod_{\alpha \in n z(\beta) \backslash 0}\left(\frac{a_{\beta, \alpha}}{\lambda_{\alpha}^{(\beta)}}\right)^{\lambda_{\alpha}^{(\beta)}}, \forall \beta \text { with } \lambda_{0}^{\beta}=0 \\
& G_{\alpha, \mu} \geq \sum_{\beta \in \Delta G} a_{\beta, \alpha}, \forall \alpha \in V(G) \backslash 0
\end{aligned}
$$

Can be relaxed into a geometric program, which can be transformed into a convex program.

How to Utilise Variable Bounds?

- Optimisation problem: $\min x^{3}+2 x^{2}$ s.t. $-2 \leq x \leq 1$
- Optimal value is 0
- $G(x, \mu)=x^{3}+2 x^{2}-\mu_{1}(x+2)-\mu_{2}(1-x)$
- $G(x, \mu)$ is unbounded for all $\mu_{1}, \mu_{2} \geq 0$
- The issue is that variable bounds only add tail terms to the Lagrangian

Reformulated Bound Constraints

- Relaxation of the optimisation problem: $\min x^{3}+2 x^{2}$ s.t. $x^{4} \leq 32$
- Optimal value is 0
- $G(x, \mu)=x^{3}+2 x^{2}-\mu\left(16-x^{4}\right)$
- Lower bound: $\max _{\mu} \min _{x} G(x, \mu)=-2$
- A SONC certificate can be obtained proving the lower bound of -2

Choosing Reformulations

Reformulated constraints: $x_{i}^{\hat{\alpha}} \leq \max \left\{\left|l_{i}\right|,\left|u_{i}\right|\right\}^{\hat{\alpha}}, \hat{\alpha} \in \hat{\mathcal{A}}$

- Requirement on $\hat{\mathcal{A}}$: each $\beta \in \Delta G$ must be representable as a convex combination of exponents from $\mathcal{A} \cup \hat{\mathcal{A}}$
- Let $\hat{\mathcal{A}}=\left\{\hat{\alpha}^{(j)} \mid \hat{\alpha}_{i}^{(j)}=0\right.$ if $i \neq j$ and $\left.\hat{\alpha}_{i}^{(j)}=(n+(n \bmod 2)) \cdot \max _{\beta \in \Delta G} \beta, \forall j=1, \ldots, n\right\}$
- Choose exponents to add such that the resulting polynomial is an ST-polynomial

MINLPs in SCIP

$$
\begin{aligned}
& \min c^{T} x \\
& \text { s.t. } g_{k}(x, z) \leq 0 \quad \forall k \in \mathcal{C} \\
& x_{i} \in\left[\ell_{i}, u_{i}\right] \quad \forall i \in \mathcal{I} \\
& z_{j} \in \mathbb{Z} \quad \forall j \in \mathcal{J}
\end{aligned}
$$

- The functions $g_{k}:[\ell, u] \rightarrow \mathbb{R}$ can be

and are given in algebraic form.
- SCIP solves MINLPs by spatial Branch \& Bound.

Relaxation Handler Plugins in SCIP

- By default, SCIP solves LP relaxations
- Custom relaxations can be implemented in relaxation handler plugins (relaxators)
- One fundamental callback: RELAXEXEC, which can:
- Provide a dual bound or detect infeasibility of the node
- Provide primal solution candidates
- Reduce variable domains
- Add branching candidates and cutting planes

Algorithm: Key Steps

- Revert the moving of nonlinear terms from the objective to constraints (otherwise, the introduced objective variable is a term in $\Delta(f)$ without cover)
- Construct the Lagrangian $G(x, \mu)$
- Compute $V(\mathcal{A})$, simplex vertices/simplex cover, add polynomial bound constraints
- Add bounds on Lagrangian multipliers to ensure nonnegativity of vertex coefficients
- Create and solve the GP
- Retrieve the dual bound

Implementation with SCIP and POEM

- Implemented as a relaxator plugin, called during SCIP's branch and bound
- GPs are constructed by POEM, software for polynomial optimization via SONC certificates

Computational results: Existence of a Solution

- Testset: 180 instances randomly generated by Dalkiran and Sherali, 169 instances from MINLPLib
- Time limit 1 hour

Test Run	Solution Status of the Relaxation		
	optimal	decomposition not found	did not run/timeout
Standard SONC	9	333	7
Strengthened SONC	330	0	19

Table: Comparison of the relaxator statuses at root node.

Computational results: Bound Quality

- SONC bound improved upon LP bound only on 8 instances
- We show 6 instances where the SONC root node bound was used

Instance	LP bound	SONC bound	Primal bound	Gap closed
ex4_1_1	-385.31	-97.88	0.1	74.5%
ex4_1_4	-3125	-27	0	89.5%
ex4_1_6	-256	-250	250	85.2%
ex4_1_7	-166.64	-44.17	0	73.5%
mathopt5_8	-41.14	-8.24	0	80.0%
waterund01	-307.56	-262.89	∞	-

Table: Dual bounds at the root node

Summary and Outlook

- We developed a method that guarantees a finite SONC bound if all variables are bounded
- A considerable improvement is observed on few instances, but LP bound is stronger on remaining instances
- The computational cost of SONC relaxations is high compared to LP relaxations

Future work:

- Further develop methods for utilizing variable bounds to strengthen SONC relaxations
- Develop branching rules, presolving methods, etc.
- Can a SONC-based branch and bound algorithm be proven to converge?
- Interesting polynomial optimization problems? (high degrees, non-trivial instance sizes)

